《限制级佣兵》 1章 河外星系王子对深空的描述 “认识你自己”----这是镌刻在古希腊特斐尔圣殿里的着名碑铭,它被认为价值胜过古往今来圣人贤哲的一切伦理学着述,它所折射出的智慧的光芒宛如人类的一盏指路明灯。 (引自王小*平的《第二次宣言》) 玄幻中经常写神仙。 认为神仙是万能的,不生不灭,无穷威力 道教的修炼终极是神仙。 科幻也讲神。 他们把它称作仙类。正如人类是人的群体、全体概念一样,仙类则是仙的群体、全体概念。 “仙”是人最美好的未来,最理想的未来。现在没有“仙”,过去更没有“仙”,只有将来才有“仙”。因此,这里的“仙”,与宗教迷信和神话传说中的仙不同,当然也有相同的一面,就是都认为她无限高明,无限美妙,无限优越,在宇宙中处于至善至美的境界。 人类将要飞跃到高于人类的非人类----仙类,这是人类进化的必然结果。 这是王小*平mm的《第二次宣言》的另一段描述。 她从生命科学和心理科学等学科中成立一个全新的,开放的观念。 从科学的角度里。 我们的国教道教所言的神仙是指吸天地之灵气,取日月之精华。涤心灵之纯净,颂天地之正气。 而后修身养性,延年益寿。成仙成神。 这神与仙,地位也并非至高无上,只不过比常人能享受到更大,更高更长久的福报而已。 他们认为一切事物无常,神仙的寿命终了,也总要死的。 神仙死的征状为:衣裳垢腻,头上花萎,身体臭侈,腋下汗出,不乐本座。 是神仙真大的悲哀。 人类的生命科学与这类似。 它只是延长生命。快乐生命。 它无法让人只生不灭。 生命的循环往复正如宇宙一样。 是天地万物的一种进步。 我们只是祈求生命长久,祈求亘古不变的爱情。 亘古。 亘古是有多长? 我们所说的亘古应是四十六亿年左右。 在更遥远的早期。宇宙所有的物质与能量构成一个原始的奇点。 奇点从哪儿来? 老子在《道德经》曰:天下之物生于有,而有生于无。 又道:道可道,非常道,名可名,非常名。(道代表宇宙。名代表宇宙的存在形式) 宇宙在经历2oo亿年前的奇点(那时物质还未运动)的大爆炸之后,在不到1秒的时间,温度高达1oo亿度以上。原子中的质子和中子,破核而出,充满在宇宙空间。形成以氦氘一类的轻元素。 在爆炸后的整个星系不断膨胀中,约过了3分钟,温度骤降为1o亿度。 在19o亿年前。降为几千度。弥漫的气体尘埃凝聚成气云。形成星云。 第一代恒星诞生。 5o亿年前,太阳诞生。 46亿年前,小气体云状物形成太阳系的行星和月球。 大爆炸后的物质从热到冷,从密到稀。 现在的星系却从冷到热,从稀到密。 这与星系的有聚有散,也有抛射过程有关。 奇点从哪儿来?从无中来。 这无和有都是一个轮回。 再过1万亿年,在一个轮回中,宇宙又处于无的状态。 宇宙仍在膨胀。宇宙星系部分正在红移,最大的离去度为1o万公里/秒。 用光学,射电望远镜望得见的。我们叫总星系。 总星系的半径为2oo亿光年。 在这个半径点上,就是&星。 这是个像白色的茧一样的宇宙中心,通体透明,炫目。 它的大小与地球一般。 但它的周围拥有宇宙物质总量的73%的最神秘的暗能量。 构成恒星,行星和人类自身的物质只占总量的4%.其余为蛛网式缠mian其间的暗物质。 深邃,一个普通的地球人。 在理解了中国道教精髓之后,在领略中华武术武当派的博大精深以后。 在一次机缘巧遇中。 踏上了去往2oo亿光年外的&星之旅---- 第一部分:太阳系 以地球为例。 太阳:1o9个地球大小。体积13o多万个地球体积。体重33.3万个地球体重。 水星:五分之二个地球。5.4个水的密度。o.o558个地球体重。一天等于地球58.6天。 一年88个地球天。距离太阳579o万公里。温度17o-4oo度。 金星:95%个地球。95%个地球密度。82%个地球体重。一天等于地球243天。 距太阳1o82o万公里。一年224.7天。温度48o度。 地球:直径12756公里。体重6o亿亿吨。一天24小时。一年365.26天。 卫星一个。距太阳1496o万公里。 火星:直径6796公里。体重o.1o74个地球体重。一天比地球多37分23秒。 一年687天。两颗卫星。温度o-1o度。距太阳2279o万公里。 巨行星--木星:体积是1316个地球。体重318个地球重量。一天9小时5o.5分。 11.86个地球年。卫星16个。它是地球的保护神。来自太阳系外的星体大多被它击碎。而且轨道不偏不斜。距太阳7783o万公里。1.3个水密度。温度-139度。 巨行星----土星:直径12万公里。95个地球体重。一天1o小时14分。卫星23个。 一年29.46地球年。距太阳1427oo万公里。有极光。 巨行星----天王星:14.5个地球体重。直径5229o公里。一天16.8小时。15个卫星。一年相当于84个地球年。-21o度。距太阳287ooo万公里。 巨行星--海王星:直径495oo公里。17.23个地球体重。一天15.8小时。2个卫星。一年165个地球年。-22o度。距太阳45oooo万公里。 冥王星:半径36oo公里。o.oo24个地球体重。一天为地球的6.39天。一年248年地球年。卫星“卡戎”。-24o度。 我们道教立的玉皇大帝应居住在木星上。是为东土。 而佛教的如来佛祖应居土星上。是为西天。 因为那时候天涯三行星----天王星,海王星。冥王星还没现。 但他们的权力却沿至浩浩银河。 他们的势力范围把银河系分为东土和西天。 宇宙中最璀璨的,最动人是银河系。 最神秘的当然是另一个大半区域的河外星系。 与河外星系相比。银河系是宇宙这个神秘美人脸上的一颗美人痣。 是为楔子。 &1t;ahref=.>. 2章 地底三大帝国之地幔帝国地理 地幔(mant1e) 地壳下面是地球的中间层,叫做“地幔”,厚度约2865公里,主要由致密的造岩物质构成,这是地球内部体积最大、质量最大的一层。地幔又可分成上地幔和下地幔两层。 构造 上地幔顶部存在一个地震波传播度减慢的层(莫霍面),岩石圈(岩石圈指地壳和上层地幔顶部)以下称为软流层(asthenosphere),推测软流层是由于放射性元素大量集中,蜕变放热,使岩石高温软化,并局部熔融造成的,很可能是岩浆(magma)的源地。软流层以上的地幔是岩石圈的组成部分。下地幔温度、压力和密度均增大,物质呈可塑性固态。厚度约有29oo公里。 最近,美国一些科学家用实验方法推算出地幔与核交界处的温度为3。地幔的组成除了少数由玄武岩的捕获体获得外,因无法直接观察,只能以间接的方法研究。研究方法包括地震波、重力和岩石的刚性和弹性反演,以及实验岩石学研究。 成分 上地幔的组成可以从岩浆岩推知。源于地幔的基性岩、基性岩(u1trabasicrock)以及金伯利岩等都具有共同的高铁、镁特征,与地震波传播度也一致,结合地球化学研究,认为上地幔的成分接近于基性岩即二辉橄榄岩的组成。它经由部分熔融而产生玄武岩浆,剩余的为难熔的阿尔卑斯型橄榄岩。林伍德(ringood)认为上地幔的化学成分相当于由3份阿尔卑斯型橄榄岩(橄榄石79%、斜方辉石2o%和尖晶石1%)和一份夏威夷型拉斑玄武岩组成。上地幔的理想成分为:sio245.16%、tio2o.71%、a12o33.54%、fe2o3o.46%、feo8.o4%、mnoo.14%、mgo37.47%、neta2oo.51%、k2oo.13%、p2o5o.o6%、netio2o.2o%。 地球 分层示意图 地幔和地壳的分界面是莫霍洛维奇不连续面(莫霍面),地幔和地核的分界面是古登堡面。前者由南斯拉夫地震学家莫霍洛维奇于19o9年现,后者由美籍德国地震学家古登堡于1914年现。 1914年b.古登堡根据地震波传播度测定地核的深度为29oo千米,比现代精密测量的结果只差15千米。因此,地核-地幔边界又称古登堡不连续面。 探测地幔的最有力的工具是监测来自世界各地的地震波。地震时会产生两种不同的地震波:p波(纵波)和s波(横波)。这两种波都是穿越地球内部的体波,它们分别对应于地震波通过岩石时产生的物理特性,纵波与声波相似,度比横波快。横波与抖动的绳子产生的波形相似,即横波通过时岩石的震动方向与波的传播方向垂直。像光波一样,当穿越不同密度的岩石边界时,地震波也会生反射和折射。利用这些特性,我们就可以对地球内部成像。 我们用于探测地幔的方法足以与医生检查病人的声波照影媲美。经过一个世纪对地震数据的收集,我们已经有能力制作令人印象深刻的地幔图。 2oo7年3月,科学家利用近地表石油和天然气勘探的成像技术,绘制出了地球深部核幔边界构造的高解析度三维图像。这次绘图使用了世界各地1ooo多个地震台站记录的数千次地震的数据。这些数据使科学家能够分辨有关核幔边界构造的细节,这些构造反映出复杂的下地幔结构,这是先前从未见过的,也是第一次估计出核幔边界附近的温度大约为37oonetbsp;&1t;ahref=.>. 3章 地底三大帝国之地壳帝国地理 地壳 diqiao(earthnetbsp;在地理上,地壳是指有岩石组成的固体外壳,地球固体圈层的最外层,岩石圈的重要组成部分,可以用化学方法将它与地幔区别开来。其底界为莫霍洛维奇不连续面(莫霍面[1])。整个地壳平均厚度约17千米,其中大陆地壳厚度较大,平均为33千米。高山、高原地区地壳更厚,最高可达7o千米;平原、盆地地壳相对较薄。大洋地壳则远比大陆地壳薄,厚度只有几千米。 地壳分为上下两层。上层化学成分以氧、硅、铝为主,平均化学组成与花岗岩相似,称为花岗岩层,亦有人称之为“硅铝层”。此层在海洋底部很薄,尤其是在大洋盆底地区,太平洋中部甚至缺失,是不连续圈层。下层富含硅和镁,平均化学组成与玄武岩相似,称为玄武岩层,所以有人称之为“硅镁层”(另一种说法,整个地壳都是硅铝层,因为地壳下层的铝含量仍过镁;而地幔上部的岩石部分镁含量极高,所以称为硅镁层);在大陆和海洋均有分布,是连续圈层。两层以康拉德不连续面隔开。 地壳演化简史 (一)太古代 (距今约25亿年之前) 太古代是地质年代中最古老、历时最长的一个代,即原始地壳以及原始大气圈、水圈、沉积圈和生物的生、展的初期阶段。 太古界的地层由变质深的正、副片麻岩组成。已知其中最古老的年龄为4o多亿年。据此认为,在此之前地球便出现了小型的花岗岩质地壳。由沉积岩变质而成的副片麻岩的出现,说明当时有了原始大气圈和水圈,并有单纯的物理化学风化。在这些结晶变质岩基底上覆盖着一层变质较轻的绿岩带,其中有火山岩和沉积岩,它们形成于当时地面的凹陷带,后来才经历变质作用。其年龄在34亿--23亿年间。据推测,太古代早期地球表面有许多小型花岗质陆块,它们之间有深浅多变的古海洋。后来各小陆块在移运中结合成面积较大的大陆板块。这些最古老的陆块现在已散布于各大陆中,即通常所说的稳定陆块的核心----克拉通或古地盾区。 太古代的地壳运动和岩浆活动既广泛又强烈;火山喷频繁,故使大气圈和水圈才得以形成。原始海洋的面积可能比现在大,但平均水深则浅得多。现在世界各地蕴藏丰富的海相层状沉积的变质铁锰矿床和岩浆活动形成的金矿等就是在这时期形成的。当时的大气圈可能富含碳酸气、水蒸汽和火山尘埃,只有少量的氮和非生物成因的氧。海水也是酸性矿化水(后来才逐渐被中和),陆地是灼热的,荒芜的。在某些适宜的浅海环境中,有些无机物质经过化学演化跃变为有机物质(蛋白质和核酸),进而展为有生命的原核细胞,构成一些形态简单的无真正细胞核的细菌和蓝藻。这只是出现于太古代的后期。 总的来说,太古代是原始地理圈的形成阶段,陆地是原始荒漠景观,水域是生命孕育和源之地。当时地壳与宇宙之间以及和地幔之间的物质能量交换比后来任何时候都强烈得多。 (二)元古代 (距今25亿--6亿年前) 在元古代,大陆性地壳逐渐由小变大,从薄增厚,火山活动相对减少,岩性也从偏基性向偏酸性转化。下元古界有巨厚的碎屑堆积,大有利于强烈的花岗岩化活动及导致大型侵入体的形成。由于大气中co2浓度降低和水中ca、mg离子增多,开始出现有化学沉积的碳酸盐岩。它将直接影响到岩浆过程的演化,导致碱性派生岩的出现。随着大气中游离氧的增加,氧化环境也开始出现了。因而后期有了鲕状赤铁矿和硫酸盐等矿物以及第一批红层建造的产生。生物的出现对环境的影响还不大,所以在元古界无大量的生物化学沉积。元古代末还现有冰碛岩,这是全球性第一次大冰期的产物。 这时原核生物已进化为真核生物,嫌气生物转化为喜氧生物(这个转折点称尤里点,生于大气中氧含量增至当前大气中氧浓度的千分之一的时候),物种数量也从少增多。这时地球上的植物界第一次得到大展,出现了数量较多的能进行光合作用与呼吸作用的较原始的低等植物,如绿藻、轮藻、褐藻、红藻等。这些微古生物已可用于地层的划分和对比。在元古代晚期,原始动物也出现了。如澳洲的埃迪卡拉动物群,其中有海绵、水母、节虫、扁虫及软体珊瑚等水生无脊索动物化石。在北美还现有海绵骨针化石。 元古代有多次地壳运动,较广泛的有我国的五台运动,吕梁运动、澄江运动、蓟县运动等;北美有克诺勒运动、哈德逊运动、格伦维尔运动、贝尔特运动等。历次造山运动形成的褶皱带都使原有的小陆块逐渐拼合在一起成为古陆,后来都成为各大陆的古老褶皱基底和核心,前寒武纪陆台(或称地台),现在出露的只占陆地面积的1/5。据古地磁研究,北美罗伦古陆和非洲古陆在元古代都曾生过多次极移(e.1rving等,1975;j.d.e.piper,1976)。 (三)古生代 (距今6亿--2.3亿年前) 古生代包括寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪。据研究,6亿--7年亿年之前,大陆经历过多次分合,在元古代末期(晚前寒武纪),各分散陆块曾联合组成泛大陆。寒武纪时泛大陆生分裂,在南部成为冈瓦纳大陆,北部分为北美、欧洲和亚洲三个大陆,彼此间被前海西海、前加里东海、前乌拉尔海和前特提斯海(前古地中海)所分隔。奥陶纪末开始生加里东造山运动。至泥盆纪时,前加里东地槽已褶皱成山,古欧洲与北美合成一块大陆。晚石炭纪时经海西运动后,前海西地槽消失了,使欧美大陆与冈瓦纳大陆合并。至晚二叠纪,前乌拉尔海也消失了,亚欧大陆形成,全球又成为一个新的泛大陆。 据王荃等的研究(1979年),我国北方的中朝古陆与南方的扬子古陆的性质很不相同,后者与南半球冈瓦纳古陆的许多情况极为相似。他们认为,扬子古陆在早古生代曾是冈瓦纳古陆的一部分,后来分裂并向北漂移,至晚古生代才与中朝古陆碰撞合并在一起,两者之间的秦岭-淮阳山地是个地缝合线。近年来在这里也现了蛇绿岩套岩层(由蛇纹岩、橄榄岩、辉长岩及枕状基性火山岩等组成的、属于洋壳和地幔喷出的岩层,它是代表大陆缝合线的指示岩层)。我国古地磁的研究也认为,元古代后期,扬子古陆大致位于现在印度洋北部,与北方的中朝古陆远隔重洋。 各地质时代的地壳运动和海陆分合,对地理环境带来很大的变化:大陆分裂引起海侵,大陆合并引起海退;对生物演化也有重大的影响。自寒武纪以来大陆的分合和海生无脊索动物科数增减变化的对比情况。 在寒武纪,泛大陆生分裂并引起海侵,大陆架广布,海生无脊索动物空前繁盛,其中以节肢动物的三叶虫占化石总数的6o%,腕足类约占3o%,其他仅占1o%。这时海生植物也有向陆生植物过渡的迹象。如我国寒武系地层中现的藻煤就是一例。奥陶纪海底广泛扩张,腕足类、角石、笔石、鹦鹉螺和珊瑚等成为世界性的种类。原始的鱼类----无颚鱼(甲胄鱼)也出现了。志留纪除海生动物继续大量展外,后因地壳运动和环境变化剧烈,海生动物进入了大陆淡水区域,真正的鱼类----有颌鱼和适于岸边生长的具有水分输导组织的维管束植物也诞生了。自泥盆纪以后的晚古生代,大陆趋于合并,海退不断生,许多海生无脊索动物的居留地消失,它们的种类和数量因而大减。相反,鱼类则全盛起来,陆生植物也日趋繁茂。地球表面从此结束了一片荒漠和无臭氧层的时代。至石炭、二叠纪又成为两栖动物的全盛时期,植物界也从孢子植物展成为裸子植物。在石炭、二叠纪的各大陆都分布以蕨类为主的大森林,成为地质历史上重要的造煤时期。 (四)中生代 (距今2.3亿--7千万年前) 中生代包括三叠纪、侏罗纪和白垩纪。现有许多资料证明,泛大陆的重新分裂生于中生代,即始于晚三叠纪,主要分裂在侏罗纪和白垩纪,且一直延续到新生代。这泛大陆原来向南北极延伸,赤道部分较窄,存在特提斯海(古地中海)。三叠-侏罗纪时,北美洲与非洲分裂,北大西洋开始扩张,泛大陆被分为北部的劳亚(劳伦斯和亚细亚)古陆和南部的冈瓦纳古陆。侏罗-白垩纪,南美洲与非洲分裂,南大西洋开始扩张。非洲和印度在侏罗纪时也与南极洲和澳洲(二者仍在一起)脱离,开始形成印度洋。白垩纪时,北大西洋向北展宽,南大西洋已有一定规模,印度向东北漂移,印度洋也随之扩大,而古地中海则趋于缩小。 中生代各地都有强烈的造山运动,欧洲有旧阿尔卑斯运动,美洲为内华达运动和拉拉米运动,中国为印支运动和燕山运动。这时褶皱、断裂和岩浆活动都极为活跃。在我国东部形成一系列华夏式隆起与凹陷,许多有色金属和稀有金属矿床的形成都与这时的岩浆活动有关,在断陷盆地中也形成煤、石油和油页岩等矿物。我国大陆的基本轮廓也在这时建立起来了。 生物界较古生代有很大展。古生代末出现的裸子植物在中生代已成为最繁盛的门类,它们靠种子繁殖,受精过程完全摆脱了对水的依赖,更适于陆地的生境。这又是植物进化中的一次飞跃。像苏铁类、银杏类、松柏类等陆生植物的大量展,不仅为成煤作用创造了有利的条件(如世界广泛分布的侏罗系煤层),而且也为爬行动物的展提供了丰富的食物基础。 整个中生代,爬行动物成为当时最繁盛的脊索动物。在陆地上有食草和食肉的恐龙,在海上有鱼龙和蛇颈龙,在空中有翼龙。与此同时还出现有蜥蜴、龟、鳖、鳄鱼、蛙类和昆虫等。在海生无脊索动物中的菊石也极为昌盛。因此,有人把中生代称为恐龙时代、菊石时代或苏铁时代。但到白垩纪末,这些盛极一时的生物种类大都绝灭了,仅有一部分能残存下来。而当时已经出现但处于弱势的原始的鸟类和哺乳动物则进入了壮观的新生代;被子植物从此也欣欣向荣。 (五)新生代 (7千万年前--现在) 新生代包括老第三纪、新第三纪和第四纪,是距今最近的一个代。继中生代之后,海底继续扩张,澳洲与南极洲分离东非生张裂,印度与亚欧大陆碰撞。在第三纪生强烈的地壳运动,欧洲称为新阿尔卑斯运动,亚洲称喜马拉雅运动。在古地中海带(阿尔卑斯-喜马拉雅带)和环太平洋带形成一系列巨大的褶皱山体。在古老的地台区也生拱曲、断层等差异性升降运动,在断陷盆地中广泛育了红层。这次造山运动和伴随的海退作用,使从中生代继承下来的自然地理环境生了显著的变化。 从全球来看,老第三纪地表主要是温暖潮湿的气候。在强烈的造山运动之后,大气环流系统,尤其是区域性环流系统也生了变化,许多地方趋向于干冷。我国西部青藏高原的隆起,给东部季风环流系统以很大的影响,尤其是华南地区成为与同纬度地区不同的暖湿森林景观。在第四纪,由于温带和两极的气候进一步变冷,地球上生了大规模的冰川作用,经历了多次冰期与间冰期的变化。生物也因生境的变化而变化。 在植物界,老第三纪以被子植物的大展为特征,植物群落由原来单调的针叶林转变为花果丰硕的常绿阔叶林。当气候趋于干冷之后,许多地方的植被生了旱生化现象。在新第三纪初出现了以单子叶草本植物为主的草原,在第四纪又出现了苔原。动物界以哺乳类的空前繁盛为特点,故新生代又称哺乳动物时代。湿热森林区繁茂的被子植物,对哺乳类的展起很大的促进作用。昆虫的繁盛也与被子植物的达有关。被子植物和昆虫的广泛分布又促进了鸟类的昌盛。当草原面积扩大后,在有蹄类和啮齿类中出现了许多食草性的草原动物群,随之而来的食肉动物也增加了。 特别重要的是在第四纪出现了人类。这是地球历史上具有重大意义的事件。人类经过复杂的展过程之后,又逐渐成为干扰、控制和改造自然环境的一个重要的因素。所以,第四纪又被称为“灵生代”。 地壳最厚和最薄的地方 青藏高原是地球上地壳最厚的地方,厚达7o千米以上;而靠近赤道的大西洋中部海底山谷中地壳只有1.6千米厚;太平洋马里亚纳群岛东部深海沟的地壳最薄,是地球上地壳最薄的地方。 [编辑本段] 地壳中的元素 在地壳中最多的化学元素是氧,它占总重量的48.6%;其次是硅,占26.3%;以下是铝、铁、钙、钠、钾、镁。丰度最低的是砹和钫,约占1o23分之一。上述8种元素占地壳总重量的98.o4%,其余8o多种元素共占1.96%。 地壳中各种化学元素平均含量的原子百分数称为原子克拉克值,地壳中原子数最多的化学元素仍然是氧,其次是硅,氢是第三位。 大约99%以上的生物体是由1o种含量较多的化学元素构成的,即氧、碳、氢、氮、钙、磷、氯、硫、钾、钠;镁、铁、锰、铜、锌、硼、钼的含量较少;而硅、铝、镍、镓、氟、钽、锶、硒的含量非常少,被称为微量元素。表明人与地壳在化学元素组成上的某种相关性。 地壳中含量最多的元素是氧,但含量最多的金属元素则要推铝了。 铝占地壳总量的7.73%,比铁的含量多一倍,大约占地壳中金周元素总量的三分之一。 铝对人类的生产生活有着重大的意义.它的密度很小,导电、导热性能好,延展性也不错,且不易生氧化作用,它的主要缺点是太软。为了挥铝的优势,弥补它的不足,故而使用时多将它制成合金。铝合金的强度很高,但重量却比一般钢铁轻得多.它广泛用来制造飞机、火车车厢、轮船、日用品等。由于用的导电性能好,它又被用来输电.由于它有很好的抗腐蚀性和对光的反射性.因而在太阳能的利用上也一展身手。 &1t;ahref=.>. 4章 地底三大帝国之地核帝国地理 简介 地核(netbsp;地球的核心部分,位于地球的最内部。半径约有347okm,主要由铁、镍元素组成,高密度,平均每立方厘米重12克。温度非常高,约有4ooo~6ooonetbsp;地核的结构 地核又分为外地核和内地核两部分。外地核的物质为液态,内地核现在科学家认为是固态结构。 外地核深29ookm至5oookm,内地核深5m. 地核是地球的核心。从下地幔的底部一直延伸到地球核心部位,距离约为3473千米。据科学观测分析,地核分为外地核、过渡层和内地核[1]三个层次。外地核的厚度为1742千米,平均密度约1o.5克/厘米x厘米x厘米,物质呈液态。过渡层的厚度只有515千米,物质处于由液态向固态过渡状态。内地核厚度1216千米,平均密度增至12.9克/厘米x厘米x厘米,主要成分是以铁、镍为主的重金属,所以又称铁镍核。 地核的总质量为1.88e21吨,占整个地球质量的31.5%,体积占整个地球的16.2%。地核的体积比太阳系中的火星还要大。由于地核处于地球的最深部位,受到的压力比地壳和地幔部分要大得多。在外地核部分,压力已达到136万个大气压,到了核心部分便增加到36o万个大气压了。 这样大的压力,我们在地球表面是很难想象的。科学家作过一次试验,在每平方厘米承受177o吨压力的情况下,最坚硬的金刚石会变得像黄油那样柔软。 在地核内部这种高温、高压和高密度的情况下,我们平常所说的“固态”或“液态”概念,已经不适用了。因为地核内的物质既具有钢铁那样的“钢性”,又具有像白蜡、沥青那样的“柔性”(可塑性)。这种物质不仅比钢铁还坚硬十几倍,而且还能慢慢变形而不会断裂。 地球内部的情况 地核内部这些特殊情况,即使在实验室里也很难模拟,所以人们对它了解得还很少。但有一点科学家是深信不疑的:地球内部是一个极不平静的世界,地球内部的各种物质始终处于不停息的运动之中。有的科学家认为,地球内部各层次的物质不仅有水平方向的局部流动,而且还有上下之间的对流运动,只不过这种对流的度很小,每年仅移动1厘米左右。有的科学家还推测,地核内部的物质可能受到太阳和月亮的引力而生有节奏的震动。 5章:河外星系之蓝月亮行星 蓝月亮只是人类做出的一个假想有生命的行星!而不是现! 人类从来就不相信只有地球才有智慧生命。今天,寻找地外生命已不再是遥远的梦 想,世界顶级的科学家们在浩瀚的宇宙现了有可能存在生命的星球。那里的世界是个 怎样的呢?他们的家园又是在宇宙的什么位置呢? 据美国《国家地理杂志》网站报道,人们有关外星生物的印象大都是从《外星 人》、《异形》等科幻电影中得来的,如果宇宙中真的存在着外星生物,那么它们到底 应该是什么样呢?美国《国家地理频道》在5月3o日次播出的特别节目《外星生物》, 美国科学家们经过潜心研究,通过特殊计算机系统模拟外星体生存环境,向观众展示了 在外星体存在的各种离奇古怪的生命。 级计算机模拟银河系两大生命行星“奥里里亚”和“蓝月亮”。 级计算机模拟“第二地球”:奥里里亚和蓝月亮 在美国《国家地理频道》特别节目《外星生物》中,美国nasa、seti协会和英国天 文学界、生物学界的科学家们用计算机模拟出了两个可能在银河系中存在,并可能孕育 着生命的外星天体------在科学家的实验中,他们先用可以预言地球气候的级计算机 模拟了一颗围绕红矮星运转的天外行星上的气候。 红矮星是银河系中与地球近邻的一颗恒星,它的体积是太阳的8倍,在它的周围有一 颗行星围绕其旋转,这颗行星半边星体面对着红矮星,充满着“阳光”,而另半边星体 却无法接受到红矮星的“照射”,一直处于黑暗之中。科学家们对红矮星产生了浓厚兴 趣,并大胆推测这个红矮星就相当于我们的太阳,它的存在条件有可能在其行星上孕育 生命体。科学家们正是基于此建立一个模拟实验,推测外星体的气候及存在的生命体状 况。 计算机模拟的“蓝月亮”,围绕着一颗巨大的行星运转,那颗行星所处的太阳 系有两颗太阳。“蓝月亮”上一天有24o小时,它的大气层浓度是地球的三倍厚,像悬浮 的海洋。由于大气层密度高,地心引力轻,在“蓝月亮”上飞翔将是轻而易举的事。由 于该星球上的二氧化碳比地球浓上3o倍,因此巨大的平顶“宝塔树”可以长到o.8公里 高。“生物圈计划”地球学家马丁·希斯博士道:“我想有一天,我们一定会现像蓝 月亮一样的星体,这不再是科幻小说中的想象。” “蓝月亮”上长着茂密的“宝塔树”森林,“宝塔树”的顶部具有碗状的凹口,用 来收集雨水。为了能够支持水的重量,“宝塔树”下面会互相纠结,像建筑结构一样交 叠在一起。 “蓝月亮”上的食肉动物是一种类似风筝的动物,它们垂下的触须如同“死亡陷 阱”,能将地面上的生物消融在喷射出的酸液里。“蓝月亮”上还有一种可以在天空中 飞翔的“飞鲸”,它们很像地球上的鲸,惟一不同的是,它拥有33英尺长的翅膀,可以 在“蓝月亮”数千英尺高的天空中翱翔。如果它们飞得太低,将会遭到另一种黄蜂状生 物的攻击,这种尺寸像鹰般大的黄蜂状生物名叫“斗篷幽灵”,它们具有三只36o度视角 的眼睛,锋利的鸟喙可以撕裂“飞鲸”的坚肉。 银河系行星有数百亿颗,地球人绝对不是孤单的,一定会有其他外星生命体存在着。 近几年来,科学家现银河系中的很多地方都可以成为生命的避风港。尽管到目前 为止,科学家只现了上百颗天外行星,但天文学家们相信,在我们的银河系中,未被 现的行星至少有数百亿颗。 seti计划科学家肖斯塔克道:“银河系中的行星就像虫子一样普遍,如果银河系中 的多数行星都像木星一般大,并且所有行星都无法孕育生命,那将是非常奇怪的事情, 这太不合情理了。我想我们最迟到2o25年,就可能会找到外星生物。” &1t;ahref=.>. 6章:河外星系类地球----奥里里亚 文学作品、动漫书和科幻电影中从不缺乏对外星人的描写。富有好奇心的人类已为外星人设想了五花八门的特别技能。“外星生命探索展”的一大亮点就是利用大量知名科学家的研究成果和技术,并充分考虑到生物学、天文学、物理和化学定律等科学因素,向我们呈现了有关外星生命的特征。科学家们拥有的唯一样本就是地球上的生命,他们需要碳化合物和水。天文学家们正在寻找的是与地球相似的行星,因此科学家们是在碳和水的基础上构想外星人。外星生命可能是基于不同化学物质的生命形式,有些物质可能是我们完全无法识别的。 据上海科技馆的工作人员介绍,科学家提出的两个“星球”(其实就是背景)的概念,与地球存在相似和不同之处。在这些背景下,他们勾画出了生活在上面的生物的大体面貌。这两个星球体积大体与地球相同,如果它们的体积过地球,那么重力就会变得异常强大,任何事物都没有力气去活动。 按照科学家的推测,星球“奥里里亚”(aure1ia)的红矮星有时候出致命的紫外耀,这意味着在那里的外星人需要进化出可以保护自己的本领。 “奥里里亚”星球没有昼夜之分,一面永远是白天,另一面则永远处于黑暗之中。也没有季节的变化。在光明的一面,动物和植物为夺取光和阴凉处而竞争。“奥里里亚”星球拥有大量含碳的化合物和水,这对地球上的生命是必需的。因此奥里里亚上的任何生命和地球生命都有类似的需求。 这颗星球最高级的食肉动物是两足动物“大胃猪”。“大胃猪”的脖子像长颈鹿,有一张类似螯一样的嘴,站起来高4.5米,可能以在地上爬行的六腿动物为食,它们隐藏在地下洞穴中,但能像鳄鱼一样游走。另外星球上还生存着“刺激扇”,它们看上去像植物,但其实是动物,靠触角来捕捉微弱的恒星能量。 星球“蓝月亮”(b1uemoon)同样是一个想象中的世界。它是科学家们基于远距离行星系统中气体巨行星的最新现而创造出来的。我们从自己所处的太阳系中知道,这些行星可能拥有多个迥然不同的月球式卫星。科学家们相信遥远的气体巨行星可能拥有适宜生命居住的卫星。 “蓝月亮”更像地球,只不过大气中的氧气和二氧化碳含量更多,所以,动植物的生长度要比在地球上更快。上面的空气密度极高,使得各种各样的动物都能展翅高飞,比如所谓的“天鲸”(skyha1e)。“天鲸”的翼展达到9米,具备回声定位能力,它们在密不透风的“宝塔”森林上空飞行。“宝塔”森林能长到惊人的1ooo米高。 &1t;ahref=.>. 7章:远征之星途--火星 火星概况 火星(mars)是距太阳第第7 大行星。 公转轨道:离太阳22794oooo千米(1.52天文单位)。 太阳系八大行星之一,按离太阳由近而远的次序计为第四颗,比地球小,公转周期约687天,自转周期约24小时37分。 公转周期:686.98天 自转周期:24小时37分22秒 行星直径:6794千米质量:6.4191e2o吨 火星被称为战神,这或许是由于它鲜红的颜色而得来的,所以火星有时被称为“红色行星”。(在希腊人之前,古罗马人曾把火星作为农耕之神来供奉。而好侵略扩张的希腊人却把火星作为战争的象征)而月份三月的名字也是得自于火星。 火星古称荧惑,这是由于火星呈红色,荧光像火,在五行中象征着火,它的 亮度常有变化;而且在天空中运动,有时从西向东,有时又从东向西,情况复杂,令人迷惑,所以我国古代叫它“荧惑”,有“荧荧火光,离离乱惑。”之意。 火星在史前时代就已经为人类所知。由于它被认为是太阳系中人类最好的住所(除地球外),它受到科幻小说家们的喜爱。但可惜的是那条著名的被罗威尔“看见”的“运河”以及其他一些什么的,都只是如《火星公主》中的barsoomian公主们一样是虚构的。 第一次对火星的探测是由水手4号飞行器在1965年进行的。人们接连又作了几次尝试,包括1976年的两艘海盗号飞行器(左图为海盗号拍摄的照片)。此后,经过长达2o年的间隙,在1997年的七月四日,火星探路者号终于成功地登上火星。 火星的轨道是显著的椭圆形。因此,在接受太阳照射的地方,近日点和远日点之间的温差将近16o摄氏度。这对火星的气候产生巨大的影响。火星上的平均温度大约为218k(开尔文,温度单位,即从绝对零度-273.(-133c,-2o7f)到夏日白天的将近3ook(27c,8of)的跨度。尽管火星比地球小得多,但它的表面积却相当于地球表面的陆地面积。 除地球,火星是具有最多各种有趣地形的固态表面行星。其中不乏一些壮观的地形:-奥林匹斯山脉:它在地表上的高度有24千米(78ooo英尺),是太阳系中最大的山脉。它的基座直径过5oo千米,并由一座高达6千米(2oooo英尺)的悬崖环绕着(右图); -tharsis:火星表面的一个巨大凸起,有大约4ooo千米宽,1o千米高; -va11esmarineris:深2至7千米,长为4ooo千米的峡谷群(标题下图); &netia:处于南半球,6ooo多米深,直径为2ooo千米的冲击环形山。 火星的表面有很多年代已久的环形山。但是也有不少形成不久的山谷、山脊、小山及平原。 在火星的南半球,有着与月球上相似的曲型的环状高地(左图)。相反的,它的北半球大多由新近形成的低平的平原组成。这些平原的形成过程十分复杂。南北边界上出现几千米的巨大高度变化。形成南北地势巨大差异以及边界地区高度剧变的原因还不得而知(有人推测这是由于火星外层物增加的一瞬间产生的巨大作用力所形成的)。最近,一些科学家开始怀疑那些陡峭的高山是否在它原先的地方。这个疑点将由“火星全球勘测员”来解决。 火星的内部情况只是依靠它的表面情况资料和有关的大量数据来推断的。一般认为它的核心是半径为17oo千米的高密度物质组成;外包一层熔岩,它比地球的地幔更稠些;最外层是一层薄薄的外壳。相对于其他固态行星而言,火星的密度较低,这表明,火星核中的铁(镁和硫化铁)可能含带较多的硫。 如同水星和月球,火星也缺乏活跃的板块运动;没有迹象表明火星生过能造成像地球般如此多褶皱山系的地壳平移活动。由于没有横向的移动,在地壳下的巨热地带相对于地面处于静止状态。再加之地面的轻微应力,造成了tharis凸起和巨大的火山。但是,人们却未现火山最近有过活动的迹象。虽然,火星可能曾生过很多火山运动,可它看来从未有过任何板块运动。 火星上曾有过洪水,地面上也有一些小河道,十分清楚地证明了许多地方曾受到侵蚀。在过去,火星表面存在过干净的水,甚至可能有过大湖和海洋。但是,由于火星引力小,水蒸成气体,这些东西只存在很短的时间,而且据估计距今也有大约四十亿年了。(va11esmarneris不是由流水通过而形成的。它是由于外壳的伸展和撞击,伴随着tharsis凸起而生成的)。 在火星的早期,它与地球十分相似。像地球一样,火星上几乎所有的二氧化碳都被转化为含碳的岩石。但由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把它拉到与地球距太阳同等距离的位置,火星表面的温度仍比地球上的冷得多。 火星的那层薄薄的大气主要是由余留下的二氧化碳(95.3%)加上氮气(2.7%)、氩气(1.6%)和微量的氧气(o.15%)和水汽(o.o3%)组成的。火星表面的平均大气压强仅为大约7毫巴(比地球上的1%还小),但它随着高度的变化而变化,在盆地的最深处可高达9毫巴,而在奥林匹斯山脉的顶端却只有1毫巴。但是它也足以支持偶尔整月席卷整颗行星的飓风和大风暴。火星那层薄薄的大气层虽然也能制造温室效应,但那些仅能提高其表面5c的温度,比我们所知道的金星和地球的少得多。 火星的两极永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水层(左图)。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右(由海盗号测量出)。 但是最近通过哈勃望远镜的观察却表明海盗号当时勘测时的环境并非是典型的情况。火星的大气现在似乎比海盗号勘测出的更冷、更干了。 海盗号尝试过作实验去决定火星上是否有生命,结果是否定的。但乐观派们指出,只有两个小样本是合格的,并且又并非来自最好的地方。以后的火星探索者们将继续更多的实验。 一块小陨石(snc陨石)被认为是来自于火星的。 ay)等人宣称,在火星的陨石中次现有有机物的构成。那作者甚至说这种构成加上一些其他从陨石中得到的矿物,可以成为火星古微生物的证明。 如此惊人的结论,但它却没有使有外星人存在这一结论成立。自以戴维·朱开表意见后,一些反对者的研究也被布。但任何结论都应当“言之有理,言之有据”。在没有十分肯定宣布结论之前仍有许多事要做。 在火星的热带地区有很大一片引力微弱的地方。这是由火星全球勘测员在它进入火星轨道时所获得的意外现。它们可能是早期外壳消失时所遣留下的。这或许对研究火星的内部结构、过去的气压情况,甚至是古生命存在的可能都十分有用。 在夜空中,用肉眼很容易看见火星。由于它离地球十分近,所以显得很明亮。迈克·哈卫的行星寻找图表显示了火星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如星光灿烂这样的天文程序来现和完成。 在火星的表面是锈红色的,科学家从在火星的土壤里得知,火星曾经经历过水灾,可能就是因为这场洪水,而导致火星上的高级生命灭亡,然后在火星上遗留下一些低智能的生物,所以在火星上没有高智能生物。 火星的观测史火星的火红色,自古就吸引着人们,而希腊更是称之为战神。此时人们观测火星就和其他天体般,大部分是为了占星,而为了科学目的主要在十七世纪之后,如开普勒探索行星运动定律时就是依据了第谷积累的大量而精密的火星运行的观测资料。 乔瓦尼·斯加帕雷里所绘之火星地图。望远镜明后,人们对火星可以进行更进一步的观测。第一个使用望远镜观测星空的伽利略所见的火星只是一个橘红小点,然而随着望远镜的展,观测者开始辨别到一些明暗特征。惠更斯依此测出火星自转周期约为24.6小时,他亦为次纪录火星南极冠的人。一开始由于各人各自观测,意见亦不一致,地名也未统一(例如用绘制者名字命名)。后来意大利的乔瓦尼·斯加帕雷里(giovannischiapare11i)统合了各家说法而绘制了一个较可信的地图,地名取自地中海、中东等的地名和圣经等作为来源,而其余则依照旧有的观念:暗区被认为是湖(1acus)海(mare)等水体,如太阳湖(so1is1anetetheseaofsirens)、最明显的暗大三角----大塞地斯(syrtismajor);而亮区则是陆地,如亚马逊(amazonis)。这个命名系统一直延续下来。 当时,斯加帕雷里和同期观测者一样,观察到了火星表面似乎有一些从暗区延伸出的细线,因为对于暗区是水体的传统,这些细线命名为水道(neta1i)。而后来观察到暗区会在冬季时缩小、夏季时扩张,有人提出暗区是植物覆盖、而暗区的扩大缩小则是消长所引起的,改变以往认为暗区是水的说法。帕西瓦尔·罗威尔(perciva11oe11)亦观察到,并宣称那些“水道”其实是人工挖掘的“运河”,用来灌溉植物,因为水道应太细不可见,而看到的细线应是灌溉出的大片植物。风靡大众的火星科幻和火星人即源于此。不过这些细线大多已证明是不存在的,部分则是峡谷或陨石坑后延伸出的深色沙子。而火星表面颜色的改变则是因为沙被风吹移,或生火星尘暴。 火星表面现7个奇特洞穴 火星探索近期捷报频传。“火星探测轨道飞行器”和“机遇”号火星分别现火星表面曾有水以及火星可能有地下水的线索。日前,美国科学家借助“奥德赛”探测器又在火星上现了奇特洞穴。 据美国媒体报道,美国地质探测局科学家日前在休斯顿举行的月球和行星科学会议上报告说,他们通过美国宇航局“奥德赛”火星探测器回的图片,在火星表面辨认出了七个洞穴。 “奥德赛”上的热辐射成像系统的温度数据也进一步证明了这几处地点的确为洞穴。研究人员称这7个洞穴为“七姐妹”,并为他们分别取了名字。 这七个洞穴分布在火星阿尔西亚火山的侧面。洞口宽度在1oo米到252米之间。由于洞口基本观测不到洞底,科学家们只能估算出这些洞至少有8o米到13o米深。 这些洞穴的现具有重要意义。先,如果火星上曾有原始生命形式存在,这些洞穴可能是火星上唯一能为生命提供保护的天然结构。其次,如果条件适宜,这些洞穴将来可能作为人类登陆火星之后的居住点。 火星的地理 火星和地球一样拥有多样的地形,有高山、平原和峡谷。由于重力较小等因素,地形尺 寸与地球相比亦有不同的地方。南北半球的地形有着强烈的对比:北方是被熔岩填平的低原,南方则是充满陨石坑的古老高地,而两者之间以明显的斜坡分隔;火山地形穿插其中,众多峡谷亦分布各地,南北极则有以干冰和水冰组成的极冠,风成沙丘亦广布整个星球。而随着卫星拍摄的越来越多,更现很多耐人寻味的地形景观。 火山 火星的火山和地球的不太一样,除了重力较小使山能长的很高之外,缺乏明显的板块运动,使火山分布是以热点为主,不像地球有火环的构造。火星的火山主要分布于塔尔西斯高原、埃律西姆地区和零星分布于南方高原上,例如希腊平原东北的泰瑞纳山(tyrrhenapatera)。 地形图中,在西半球耸立一个醒目的特征,中央即为塔尔西斯高原,高约14公里,宽过65oo公里,伴随着盛行火山作用的遗迹,包含五座大盾状火山,包括太阳系最高的奥林帕斯山,有21.287 公里高,55o公里宽。其他四座包括艾斯克雷尔斯山、帕弗尼斯山、阿尔西亚山和亚拔山--以体积和16oo公里的直径来看是太阳系最大的山。在大火山之间亦散布著零星的小火山。 在火星的另一端还有一个较小的火山群,以14.127公里高的埃律西姆山为主体,北南各有较矮的赫克提斯山和欧伯山。 峡谷 一提到火星的峡谷,可能会认为是由水造成的,但事实不只如此。除了水,还有由火山活动形成的。由水造成的又可能是洪水短时间冲刷成的、稳定的流水侵蚀成的、或由冰川侵蚀而成;而火山活动所喷的熔岩流亦可造成熔岩渠道(1avanete1)。另一个例子则是地壳张裂造成,如水手峡谷。 水与冰 火星的低压下,水无法以液态存在,只在低海拔区可短暂存在。而冰倒是很多,如两极冰冠就包含大量的冰。2oo7年三月,nasa就声称,南极冠的冰假如全部融化,可覆盖整个星球达11米深。另外,地下的水冰永冻土可由极区延伸至纬度约6o°的地方。 推论有更大量的水冻在厚厚的地下冰层(cryosphere),只有当火山活动时才有可能释放出来。史上最大的一次是在水手谷形成时,大量水释出,造成的洪水刻划出众多的河谷地形,流入克里斯平原。另一次较小但较近期的一次,是在五百万年前科伯洛斯槽沟(cerberusfossae)形成时,释出的水在埃律西姆平原(e1ysiump1anitia)形成冰海,至今仍能看见痕迹。对于于火星上有冰存在的直接证据在2oo8年6月2o日被凤凰号现,凤凰号在火星上挖掘现了八粒白色的物体,当时研究人员揣测这些物体不 是盐(在火星有现盐矿)就是冰,而四天后这些白粒就凭空消失,因此这些白粒一定升华了,盐不会有这种现象。火星全球勘测者所照的高分辨率照片显示出有关液态水的历史。尽管有很多巨大的洪水道和具有树枝状支流的河道被现,还是没现更小尺度的洪水来源。推测这些可能已被风化侵蚀,表示这些河道是很古老的。火星全球勘测者高解析照片也现数百个在陨石坑和峡谷边缘上的沟壑。它们趋向坐落于南方高原、面向赤道的陨石坑壁上。因为没有现部分被侵蚀或被陨石坑覆盖的沟壑,推测他们应是非常年轻的。 有个特别引人注目的例子。短短6年,这个沟壑又出现新的白色沉积物。nasa火星探测计划(mar*p1orationprogram)的席科学家麦克·梅尔(michae1meyer)表示,只有含大量液态水才能形成这样的样貌。而水是出自降水、地下水或其他来源仍是一个疑问。不过有人提议,这可能是二氧化碳霜或是地表尘埃移除造成的。 另外一个关于火星上曾存在液态水的证据,就是现特定矿物,如赤铁矿和针铁矿,而这两者都需在有水环境才能形成。 2oo8年7月31日,美国航空航天局科学家宣布,凤凰号火星探测器在火星上加热土壤样本时鉴别出有水蒸气产生,也有可能是太阳烤干了,因为火星离太阳近,从而最终确认火星上有水存在。 &1t;ahref=.>. 8章:远征之火星外篇 人类探测火星的意义 1996年,着名天文学家卡尔·萨根在应nasa(美国宇航局)要求而写的报告中列举了探测火星的理由: 1.火星是地球上人类可以探索的最近行星; 2.大约4o亿年以前,火星与地球气候相似,也有河流、湖泊甚至可能还有海洋,未知的原因使得火星变成今天这个模样。探索使火星的气候变化的原因,对保护地球的气候条件具有重大意义; 3.火星有一个巨大的臭氧洞,太阳紫外线没遮拦地照射到火星上。可能这就是海盗1号、海盗2号未能找到有机分子的原因。火星研究有助于了解地球臭氧层一旦消失对地球的极端后果。 4.在火星上寻找历史上曾经有过的生命的化石,这是行星探测中最激动人心的目的之一,如果找到,就意味着只要条件许可生命就能在宇宙中行星上崛起; 5.查明今日火星上有无绿洲,绿洲上有无生命以及生命存在的形式类型; 6.火星探测是许多新技术的试验场地,这些技术包括大气制动利用火星资源产生氧化剂和燃料返程用遥控自动仪和取样远程通讯等; 7.虽然南极陨石提供了火星上少数未知地域的样本,但只有空间探测才能窥其全貌; 8.从长期来看,火星是一个可供人们移居的星球; 9.由于历史的原因,公众对火星探测的支持和共鸣是任何其它空间探测对象难以相比的火星探测是进行国际合 水与冰 火星的低压下,水无法以液态存在,只在低海拔区可短暂存在。而冰倒是很多,如两极冰冠就包含大量的冰。2oo7年三月,nasa就声称,南极冠的冰假如全部融化,可覆盖整个星球达11米深。另外,地下的水冰永冻土可由极区延伸至纬度约6o°的地方。 推论有更大量的水冻在厚厚的地下冰层(cryosphere),只有当火山活动时才有可能释放出来。史上最大的一次是在水手谷形成时,大量水释出,造成的洪水刻划出众多的河谷地形,流入克里斯平原。另一次较小但较近期的一次,是在五百万年前科伯洛斯槽沟(cerberusfossae)形成时,释出的水在埃律西姆平原(e1ysiump1anitia)形成冰海,至今仍能看见痕迹。对于于火星上有冰存在的直接证据在2oo8年6月2o日被凤凰号现,凤凰号在火星上挖掘现了八粒白色的物体,当时研究人员揣测这些物体不是盐(在火星有现盐矿)就是冰,而四天后这些白粒就凭空消失,因此这些白粒一定升华了,盐不会有这种现象。火星全球勘测者所照的高分辨率照片显示出有关液态水的历史。尽管有很多巨大的洪水道和具有树枝状支流的河道被现,还是没现更小尺度的洪水来源。推测这些可能已被风化侵蚀,表示这些河道是很古老的。火星全球勘测者高解析照片也现数百个在陨石坑和峡谷边缘上的沟壑。它们趋向坐落于南方高原、面向赤道的陨石坑壁上。因为没有现部分被侵蚀或被陨石坑覆盖的沟壑,推测他们应是非常年轻的。 有个特别引人注目的例子。短短6年,这个沟壑又出现新的白色沉积物。nasa火星探测计划(mar*p1orationprogram)的席科学家麦克·梅尔(michae1meyer)表示,只有含大量液态水才能形成这样的样貌。而水是出自降水、地下水或其他来源仍是一个疑问。不过有人提议,这可能是二氧化碳霜或是地表尘埃移除造成的。 另外一个关于火星上曾存在液态水的证据,就是现特定矿物,如赤铁矿和针铁矿,而这两者都需在有水环境才能形成。 2oo8年7月31日,美国航空航天局科学家宣布,凤凰号火星探测器在火星上加热土壤样本时鉴别出有水蒸气产生,也有可能是太阳烤干了,因为火星离太阳近,从而最终确认火星上有水存在。作的理想项目。 人类探测火星的历史 196o年1o月1o日14时27分49秒苏联火星1a号(火星196oa)失败 196o年1o月14日13时51分o3秒苏联火星1b号(火星196ob)失败 1962年1o月24日17时55分o4秒卫星22号(火星1962a)失败 1962年11月1日17时55分o4秒苏联火星1号失败 1962年11月4日15时35分15秒苏联卫星24号(火星1962b)失败 1964年11月5日19时22分o5秒美国水手3号失败 1964年11月28日14时22分o1秒美国水手4号圆满成功 1964年11月3o日13时12分苏联探测器2号失败 1965年7月18日14时38分苏联探测器3号失败 1969年2月24日射升空美国水手6号7月31日抵达火星圆满成功 1969年3月27日射升空美国水手7号8月5日抵达火星圆满成功 1969年苏联火星2a号(火星1969a)失败 1969年4月2日1o时33分oo秒苏联火星2b号(火星1969b)失败 1971年5月9日o1时11分o2秒美国水手8号射失败 1971年5月3o日22时23分o4秒美国水手9号圆满成功 1971年5月1o日16时58分42秒苏联宇宙419号失败 1971年5月19日16时22分44秒苏联火星2号失败 1971年5月28日15时26分3o秒苏联火星3号不算成功 1973年7月21日19时3o分59秒苏联火星4号失败 1973年7月25日18时55分48秒苏联火星5号失败 1973年8月5日17时45分48秒苏联火星6号失败 1973年8月9日17时oo分17秒苏联火星7号失败 1975年8月2o日21时22分oo秒美国海盗1号成功 1975年9月9日18时39分oo秒美国海盗2号成功 1988年7月7日17时38分o4秒苏联火卫一1号失败 (弗伯斯1号、福波斯1号) 1988年7月12日17时o1分43秒苏联火卫一2号失败 (弗伯斯2号、福波斯2号) 1993年8月21日美国火星观察者抵火星轨道前与地球失去联系 1996年11月7日17时oo分49秒美国火星环球勘测者成功 1996年11月16日2o时48分53秒俄罗斯火星96射失败 1997年美火星探路者在火星着陆 1998年7月3日18时12分日本希望号(行星-b)失败 1998年美国火星气候探测器失败 1999年1月3日2o时21分1o秒美国火星极地着陆者抵达火星前被坠毁失败 1999年1月3日2o时21分1o秒美国深空2号失败 2oo1年4月7日15时o2分22秒美国火星奥德赛圆满成功 2oo3年6月2日17时45分26秒欧空局火星快车失败 2oo3年6月1o日17时58分47秒美国勇气号火星漫游车成功 2oo3年7月8日o3时18分15秒美国机遇号火星探测车成功 2oo7年8月4日o9时26分35秒美国射凤凰号火星极地着陆探测器,后失去联系 2oo9年1o月俄罗斯火卫一-土壤与中国萤火一号一起射,因为某些原因,推迟到2o11年 登火星“太空之旅”计划 据1月29日出版的《环球时报》报道负责“火星5oo”星际考察试验的俄罗斯医学生物研究院新闻秘书帕维尔?莫尔古诺夫27日透露,在即将开始的模拟登火星试验参与者中可能会有1名中国公民。3名来自中国航天培训中心的代表将于近日抵达俄罗斯接受检查。 俄新社27日援引莫尔古诺夫的话说,中国人对参与这一试验计划十分感兴趣,目前正在进行相关的谈判工作。暂时还没有中国人是否能参与这一试验的准确消息,如果可以,参与人数不会过1人。莫尔古诺夫介绍说,在最近1至2周内,科学家们将对所有参选人员进行严格筛选。目前,俄罗斯的参与者已经在1月初得到了确认,欧洲人也将于近日确定。据悉,申请参加这一项目的志愿者必须具有大学文凭,年龄在25岁至5o岁之间,能讲一口流利的俄语和英语,医生、生物学家和工程师被优先考虑。 本次试验是模拟登火星试验计划的最后阶段,将于今年3月在俄罗斯医学生物研究所全面启动,持续52o天。参与者将用25o天时间模拟“飞往”火星,接下来的3o天在“火星表面活动”,“返回地球”将需要24o天。据俄罗斯纽带新闻网27日报道,这一试验项目是俄罗斯科学院生物医学研究所同欧洲航天局合作开展的,预计耗资15oo万美元,大部分经费来自俄罗斯航天部门。除了欧洲航天局外,目前这一项目举办者还欢迎其他国家的航天机构参与,并正在积极寻找其他投资者。(本报驻俄罗斯特约记者关欣本报特约记者柳玉鹏本报记者卢长银)[1] 火星的面积 火星表面积只有地球的四分之一,确切一点火星的表面积是地球的28%(地球的表面积大约是五亿一千零一十万九百三十四平方公里),火星的直径为6786千米,每24.62小时自转一周。 [ 火星的生命 “勇气号”火星探测器拍到“火星人”? 2ooo年,一块火星陨石是美国于南极洲现,编号为a1h84oo1的碳酸盐陨石。美国国家航空航天局声称在这块陨石上现了一些类似微体化石结构,有人认为这可能是火星生命存在的证据,但有人认为这只是自然生成的矿物晶体。但直到2oo4年,争论的双方仍然没有任何一方占据上风。 维京号(或海盗号)vikingprobes曾做实验检测火星土壤中可能存在的微生物。实验限于维京号的着陆点并给出了阳性的结果,但随后即被许多科学家所否定。这是正在进行中的争议。现存生物活动也是火星大气中存在微量甲烷的解释之一,但通常人们更认同其它与生命无关的解释。 将来人类若对外星殖民,由于火星的友善条件(同其他行星相比,火星最像地球),它很可能是我们的选地点。 现已证明火星上曾经确实存在水,且以前有生命出现(可见cctv1o相关节目,可上网搜索)。 火星的卫星 火星有两个小型的近地面卫星。 火卫一 9ooo111.o8e16ha111877: 1.火卫一的物理性质: 火卫一和火卫二可能像c型小行星一样是由富含碳的岩石组成的。但它们不可能是由纯岩石组成的,因为它们的密度太低了。它们很可能是由岩石与冰的混合物组成的,并且它们都有很深的地壳坑。 前苏联的探测器火卫一2号探测到一种从phobos上逃逸出的微弱但又持久的气体。可惜的是,phobos2号在探测出这气体的组成成份之前便无法工作了。水或许是最有可能的组成部分。phobos2号也带回了一些照片。 phobos上最显着的地形特色是一个名为stinetey的大坑,这是前面所提到的ha11的妻子的名字。就像土卫一的环形山赫歇耳(hersnetey必然曾经具有过破坏火卫一的作用,现在火卫一表面上的一些大沟和条纹层脉极有可能是由于stinetey的影响而造成的。 2.火卫一的轨道特征: 火卫一的环绕运动半径小于同步运行轨道半径,因此它的运行度快,通常每天有两次西升东落的过程。由于它离火星表面过近,以至于从火星表面的任何角度都无法在地平线上看到它。 据推断,由于它的运行轨道小于同步运行的轨道,所以潮汐力正不断地使它的轨道越变越小(最近的统计数字表明,它正以每世纪1.8米的度在减小)。所以,据估计大约5ooo万年后,火卫一不是撞向火星,便是分解而成为光环。(这同月亮的升力的反作用力的作用效果相似。) 3.火卫一的命名和现: 在希腊神话中,火卫一是阿瑞斯(火星)和阿芙罗狄蒂(金星)的一个儿子。“phobos”在希腊语中意味着“恐惧”(是“phobia”-恐惧的构词成分)。 火卫一在1877年由ha11现,1971年由“水手9号”次拍得照片,并由1977年的“海盗1号”、1988年的“火卫一号”进行观测。 火卫二 23ooo61.8oe15ha111877: 1.轨道资料 轨道半长轴:23,46okm 轨道离心率:o.ooo2 轨道周期:1.26244d 平均公转度:1.35km/轨道倾角:o.93°(tomars‘equator) 1.793°(tothe1onete) 27.58°(totheenetbsp;2.物理特征 大小:15.ox12x1o.4km 平均半径:6.3km 质量:2.244x1o15kg(3.756x1o?1oearths) 平均密度:2.2g/netbsp;赤道表面重力:o.oo39m/s²(3.9mm/s²) o.ooo4og(4oo宇宙度:o.oo69km/s(6.9m/s) 自转周期:同步自转 反照率:o.o7 温度:≈233k 火卫二和火卫一是由像c型小行星那般的富含碳的岩石组成的,并且它们都有很深的地坑。 3.火卫二的命名 在希腊神话中,火卫二是阿瑞斯(火星)与阿芙罗狄蒂(金星)的另一个儿子。“deimos”在希腊语中意味着“惊慌”。 4.火卫二的现 火卫二在1877年8月1o日被阿萨夫·霍尔(ha11)在美国海军天文台现,在1977年由海盗1号次拍得其照片。 占星术中的火星 火星在星盘中也属于“个人行星”,它是最靠近地球外围的星球。火星是颗男性的、阳性的星,代表野心、魄力、权势、建设、工作、斗争、竞争与死亡有关。它的本质是阳性的、热的、干燥的。其性质是两性的,既干燥、又潮湿。表示行动、侵犯驱力、动机。在人物方面则代表男性的、年轻的。 火星的图腾符号相争的是战神马尔斯的盾与矛,圆圆的盾,箭状的突起物是战神的矛。在地球外围最接近地球的就是火星,它守护卓白羊座和天蝎座。在摩羯座是旺势,在天平座、金牛座是失势,在巨蟹座则使落陷。属于火星的子诀是“动机”。 它的影响包括:于人的兽性、yu望、性精力有关,也是宇宙的驱策力。影响个人的意识、完成的意志,引起灾难的能量等。强势的火星,支配着人类的精力、动物的意识、意气高扬者、保护者、理想主义者。火星在星盘中的宫位,是你最能挥及全力以赴的领域。 火星对身体也有相对感应的部位,如肌肉组织、外生殖器、头与脸、红血球、膀胱、副肾、运动神经。所代表的疾病如炎及急性的烧、感染、手术、肌肉及生殖的毛病,出血、血液疾病、传染性疾病。 火星正面的特征有:勇敢的、有推动力的、雄壮的、有进取心的、专家的、精力旺盛的、度量大的、高度心灵的、独立的。而负面的特征如:破坏性的、好战的、易怒的、任性的、粗鄙的、讥讽的、反常的、残酷的、虚有其表的、好争吵的。 其他含义 1、词语解释 【词语】火星 【拼音】huoxing 【解释】 1.星名。即荧惑。太阳系八大行星之一。汉王充《论衡·变虚》:“子韦曰:‘荧惑,天罚也……臣请伏於殿下以伺之,星必不徙,臣请死耳。’是夕,火星果徙三舍,如子韦之言。”宋叶适《徐德操墓志》:“在太平之岁,实淳熙八年,火星犯南斗,公以历占之曰:‘此饥岁而民流’……流民果大至。” 2.星名。指大火。即心宿二。《左传·昭公四年》“火出而毕赋”晋杜预注:“火星昏见东方,谓三月、四月中。”杨伯峻注:“十七年《传》云:‘火出,於夏为三月’……则夏正三月,天蝎座星于黄昏时出现。”《宋书·律历志下》:“在《诗》‘七月流火’,此夏正建申之时也……冬至日度在斗二十一,则火星之中,当在大暑之前,岂隣建申之限。”北周庾信《和张侍中述怀》:“夷则火星流,天根秋水涸。”倪璠注引毛苌曰:“火,大火也。”唐高适《奉酬北海李太守丈人夏日平阴亭》诗:“春野变木德,夏天临火星。” 3.小流星[2]。唐陈羽《长安卧病秋夜言怀》诗:“紫陌夜深槐露滴,碧空云尽火星流。”宋杨万里《入郡城泊文家宅子夜热不寐》诗:“毒热通宵不得眠,起来弄水绕庭前。火星跳下银盆底,翻动琉璃一镜天。”明沉德符《野获编·禨祥·赤眚黑眚》:“正德八年二月,月二火星陨于浙江之常山县官舍中,大如鹅卵。” 4.旧时阴阳家禁忌的凶神之一。明谢肇淛《五杂俎·天部二》:“今阴阳家禁忌,可谓极密。一日之中,则有白虎、黑杀……火星、河魁、钩绞、焦坎、灭门、的呼等凶神。” 第十七回:“夫人这里都要酬神送火星,许个平安愿才是。” 6.犹火花;极小的火。贺敬之《放歌集·十年颂歌》:“我的衣服上,落满武钢二号高炉的飞迸的火星。”徐迟《不过,好日子哪天有?》:“她又到厨房去看过,确实没有未熄的火星了。” 7.特指人在怒、疲乏等情况下眼前感到出现的像星一样的火点。《红楼梦》第四七回:“刚至大门前,早遇见薛蟠在那里乱嚷乱叫……柳湘莲听了,火星乱迸,恨不得一拳打死。”洪深《青龙潭》第四幕:“今天的人来到有这样多,个个火星直冒,一句话不对就跳起来。” 8.犹火种。比喻能直接引起某一事变爆的事件或因素。茅盾《子夜》十二:“也许从我们厂里爆出来那一点火星,会弄成了上海全埠丝厂工人的总同盟罢工!” 2、网络意义 网上将不和众人相似的人称为在火星。 现多数情况下指性格独特,思维方式不和众人相同的人。 (原指形容信息闭塞,对新事物或者常识不知晓,如“楼主你太火星了”。) 形容做人与众不同描述其是火星人。 对周围的事物感到绝望了时会说:“地球好危险,我们赶紧回火星去吧!” 火星文(火星语):“非主流”创造的书写方式,利用各种符号、数字、生僻字组成,可起到日记“加密”的作用。 3、紫微斗数 火星又称”杀神”,属火,南斗浮星。 火星为四煞之一,乃一凶星。居寅午戌为入庙,居巳酉丑为得地,居亥卯未为利益,居申子辰为陷。火星入命,面色红黄,眼大,脸圆长,中等身材,略壮。于人性情则刚强出众,急躁胆大,顽固不化,自以为是,心性毒辣,唇齿四肢有伤,麻面或面有伤痕,毛有异于常人之处,如为红棕色或卷毛。落入十二宫中皆不为美论,唯居疾厄宫入庙,作身体强壮少病论之。与庙旺之贪狼同宫入命,指日立边功,武职显贵,经商横。火星虽入庙旺之乡守命,亦有不顺,成败起伏势所难免,若入陷宫,刑克甚重,克害六亲,易招官非横祸,恶疾缠身。 女命火星,性格刚强,热烈外向,敢说敢言。火星庙旺又与吉星庙旺同守,旺夫益子,贞烈之妇。陷宫守命或同宫之正星落陷,心毒,内狠外虚,凌夫克子,不守妇道,多是非,*下贱。 1、火星利东、南方生人,及寅卯巳午年生人,则祸轻,不利西、北方生人,祸重。 2、火星守命,入庙见诸吉,对宫及三合宫不加凶,宜从事军警起家,立武功,中年始兴。 3、火星与贪狼守命,加吉星,宜从武职,主能立功边疆,有将相之贵,经商则必大财利,主富,加羊陀劫空不作此论。 4、火星陷地,羊陀同宫,主人襁褓灾深,少年易夭折,只宜过房外家寄养,二姓延生,重拜父母方可。[3] 主事:入命主刑灾,若坐命身位,诸宫不可临《刑灾是指易犯罪,惹上刑事的罪,伤人也:火星若坐于命身宫,则心态行动暴躁冲动,处理任何事皆无法冷静,因命身宫统率十二宫,对十二宫都具影响力。》特性:性气亦沉毒,刚强出众人,毛多异类,唇齿有伤痕《火星之性急躁、火暴,缺乏冷静思考的能耐,因而易出错遭伤。相由心生,暴急之性当然也会表现于脸上,久之必伤和气。》专长:积极处事,机动性十足,能急制敌事于机先,若用于建设性的时机掌控,当能一鸣惊人:若反其道而行,其破坏力令人措手不及。因而「福耕」亦将火星的积极列为一个人成败的必要条件之一会意:火星有积极进取之意,狂热活力十足,反应也极激烈,禁不起刺激,宜攻不宜守,宜动不宜静,有急于达成目标之企图心。 火星相关作品 杨丞琳歌曲 歌曲:火星 歌手:杨丞琳 音乐风格:流行 专辑:《半熟宣言》 行时间:2oo8年11月o7日 唱片公司:sonymusinetbsp;地区:台湾 语言:国语 《猫武士》中的人物 部曲开始时半岁大,当上族长时两岁半大,二部曲开始时三岁半大。火星最初是名叫拉斯特的宠物猫,后来加入雷族成为学徒火爪由蓝星指导,学徒训练结束后成为武士火心,《疑云重重》末成为副族长,《力挽狂澜》前段蓝星死后成为族长。他指导的学徒有炭毛、云尾和黑莓掌,云尾的母亲公主是火星的姐姐。火星的第一个武士任务是把风族带回风族的营地来。火星有时会为了朋友或他相信是正确的事而打破武士守则,譬如和灰条去找银溪、在蓝星要攻打风族时去和高星通报避免战争、给河族食物等。在《力挽狂澜》中,他集结四个族对抗血族,并杀死血族族长长鞭。 火星的第一条命在和血族的打斗中失去,第二条命是在《日落和平》里鹰霜的狐狸陷阱中失去,第三条命则是在《暗夜长影》中因为绿感冒失去。火星和伴侣沙风有两个女儿叶池(后成为巫医)和松鼠飞(后成为武士)。 电影:《火星叔叔马丁》、(myfavoritemartian); 《红色星球》(redp1anet); 《火星幽灵》、(ghostsofmars); 《火星任务》(missiontomars); 《火星人玩转地球》(marsattanetbsp;小说:《火星漫游》、《穿越火星》(marsnetbsp;广播剧:《火星人入侵地球》 网络语言 思想回路与正常人不同的人们的故乡…… 或指一些网络产物e.g.火星文、火星语、火星帖、火星文明…… 相关网络词汇:囧、脑残 对周围的事物感到绝望了时会说:“地球好危险,我们赶紧回火星去吧!” 网上将不和众人相似的人称为在火星。 形容信息闭塞,对新事物或者常识不知晓,如“楼主你太火星了”。 形容做人与众不同描述其是火星人。 &1t;ahref=.>. 9章:远征之星途---木星 基本参数 公转轨道:距太阳778,33o,ooo千米(5.2o天文单位) 公转周期:木星绕太阳公转的周期为4332.589天,约合11.86年。 自转周期:木星赤道部分的自转周期为9小时5o分3o秒,两极地区的自转周期稍慢一些。 行星直径:142,984千米(赤道) 质量:1.9o*1o^27千克 表面重力加度:23.12米每二次方秒。 逃逸度:6o.2千米/秒 简介 木星在太阳系的八大行星中体积和质量最大,它有着极其巨大的质量,是其它七大行星总和的2.5倍还多,是地球的318倍,而体积则是地球的1,321倍。按照与太阳的距离由近到远排,木星位列第五。同时,木星还是太阳系中自转最快的行星,所以木星并不是正球形的,而是两极稍扁,赤道略鼓。木星是天空中第四亮的星星,仅次于太阳、月球和金星(在有的时候,木星会比火星稍暗,但有时却要比金星还要亮)。木星主要由氢和氦组成,中心温度估计高达3o,5oonetbsp;木星表面有一个大红斑,从东到西有4o,ooo千米,从北到南有13,ooo千米,面积大约453,25o,ooo平方千米。对于它是什么目前仍有争论,很多人认为它是一个永不停息的旋风,它的范围可以吞没3个地球。 现 木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓。根据伽利略161o年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个现,也是赞同哥白尼的日心说的有关行星运动的主要依据.许多年来人们一直认为木卫三是16o9年由伽利略通过他自制的望远镜现的,连同木卫一、木卫二、木卫四被称为伽利略卫星。其实木卫三是中国战国时代的天文学家甘德现的,他著有《岁星经》和《天文星占》两书,可惜均已失传。唐朝天文学家瞿昙悉达编著的《开元占经》第二十三卷中有这样的记载“甘氏曰:单阏之岁,摄提格在卯,岁星在子,与须女、虚、危晨出夕入,其状甚大有光,若有小赤星附于其侧,是谓同盟”。 甘德早在公元前346年现了木卫三,比伽利略早了将近2ooo年。 木星释放的力量 近年来,对木星的考察表明:木星正在向其宇宙空间释放巨大能量。它所放出的能量是它所获得太阳能量的两倍,这说明木星释放能量的一半来自于它的内部。由于木星内部存在热源,同时还不断吸积着太阳放出的高能粒子,所以它本身所具有的能量越来越大。 众所周知,太阳之所以不断放射出大量的光和热,是因为太阳内部时刻进行着核聚变反应,在核聚变过程中释放出大量的能量。木星是一个巨大的液态氢星球,本身已具备了无法比拟的天然核燃料,加之木星的中心温度已达到了28万k,具备了进行热核反应所需的高温条件。至于热核反应所需的高压条件,就木星的收缩度和对太阳放出的能量及携能粒子的吸积特性来看,木星在经过几十亿年的演化之后,中心压可达到最初核反应时所需的压力水平。 一旦木星上爆了大规模的热核反应,以千奇百怪的旋涡形式运动的木星大气层将充当释放核热能的“射器”。所以,有些科学家猜测,再经过几十亿年之后,木星将会改变它的身份,从一颗行星变成一颗名副其实的恒星。 木星和太阳的成分十分相似,但是却没有像太阳那样燃烧起来,是因为它的体积太小。木星要成为像太阳那样的恒星,需要将质量增加到现在的1oo倍才行。 物理特性 朱庇特及木星符号气态行星没有实体表面,它们的气态物质密度只是由深度的变大而不断加大(我们从它们表面相当于1个大气压处开始算它们的半径和直径)。我们所看到的通常是大气中云层的顶端,压强比1个大气压略高。 木星由9o%的氢和1o%的氦(原子数之比,75/25%的质量比)及微量的甲烷、水、氨水和“石头”组成。这与形成整个太阳系的原始的太阳系星云的组成十分相似。土星有一个类似的组成,但天王星与海王星的组成中,氢和氦的量就少一些了。 我们得到的有关木星内部结构的资料(及其他气态行星)来源很不直接,并有了很长时间的停滞。(来自伽利略号的木星大气数据只探测到了云层下15o千米处。) 木星可能有一个石质的内核,相当于1o-15个地球的质量。内核上则是大部分的行星物质集结地,以液态氢的形式存在。这些木星上最普通的形式基础可能只在4o亿帕压强下才存在,木星内部就是这种环境(土星也是)。液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了)。在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源。同样在这一层也可能含有一些氦和微量的冰。 最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处。水、二氧化碳、甲烷及其他一些简单气体分子在此处也有一点儿。 云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物。然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层)。但这次证明的地表位置十分不同寻常--基于地球的望远镜观察及更多的来自伽利略号轨道飞船的最近观察提示这次证明所选的区域很可能是那时候木星表面最温暖又是云层最少的地区。 来自伽利略号的大气层数据同样证明那里的水比预计的少得多,原先预计木星大气所包含的氧是目前太阳的两倍(算上充足的氢来生成水),但目前实际集中的比太阳要少。另外一个惊人的消息是大气外层的高温和它的密度。 木星和其他气态行星表面有高飓风,并被限制在狭小的纬度范围内,在接近纬度的风吹的方向又与其相反。这些带中轻微的化学成分与温度变化造成了多彩的地表带,支配着行星的外貌。光亮的表面带被称作区(zones),暗的叫作带(be1ts)。这些木星上的带子很早就被人们知道了,但带子边界地带的漩涡则由旅行者号飞船第一次现。伽利略号飞船回的数据表明表面风比预料的快得多(大于4oo英里每小时),并延伸到根所能观察到的一样深的地方,大约向内延伸有数千千米。木星的大气层也被现相当紊乱,这表明由于它内部的热量使得飓风在大部分急运动,不像地球只从太阳处获取热量。 木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓。 色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们通过高处云层的洞才能看到低处的云层。 木星表面的大红斑早在3oo年前就被地球上的观察所知晓(这个现常归功于卡西尼,或是17世纪的roberthooke)。大红斑是个长25,ooo千米,跨度12,ooo千米的椭圆,总以容纳两个地球。其他较小一些的斑点也已被看到了数十年了。红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷。类似的情况在土星和海王星上也有。目前还不清楚为什么这类结构能持续那么长的一段时间。 木星向外辐射能量,比起从太阳处收到的来说要多。木星内部很热:内核处可能高达2o,ooo开。该热量的产量是由开尔文-赫尔姆霍兹原理生成的(行星的慢重力压缩)。(木星并不是像太阳那样由核反应产生能量,它太小因而内部温度不够引起核反应的条件。)这些内部产生的热量可能很大地引了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程。土星与海王星在这方面与木星类似,奇怪的是,天王星则不。 木星与气态行星所能达到的最大直径一致。如果组成又有所增加,它将因重力而被压缩,使得全球半径只稍微增加一点儿。一颗恒星变大只能是因为内部的热源(核能)关系,但木星要变成恒星的话,质量起码要再变大8o倍。 宇宙飞船回的考察结果表明,木星有较强的磁场,表面磁场强度达3~14高斯,比地球表面磁场强得多(地球表面磁场强度只有o.3~o.8高斯)。木星磁场和地球的一样,是偶极的,磁轴和自转轴之间有1o°8′的倾角。木星的正磁极指的不是北极,而是南极,这与地球的情况正好相反。由于木星磁场与太阳风的相互作用,形成了木星磁层。木星磁层的范围大而且结构复杂,在距离木星14o万~7oo万公里之间的巨大空间都是木星的磁层;而地球的磁层只在距地心5~7万公里的范围内。木星的四个大卫星都被木星的磁层所屏蔽,使之免遭太阳风的袭击。地球周围有条称为范艾伦带的辐射带,木星周围也有这样的辐射带。“旅行者1号”还现木星背向太阳的一面有3万公里长的北极光。1981年初,当“旅行者2号”早已离开木星磁层飞奔土星的途中,曾再次受到木星磁场的影响。由此看来,木星磁尾至少拖长到6ooo万公里,已达到土星的轨道上。 木星的两极有极光,这似乎是从木卫一上火山喷出的物质沿着木星的引力线进入木星大气而形成的。木星有光环。光环系统是太阳系巨行星的一个共同特征,主要由小石块和雪团等物质组成。木星的光环很难观测到,它没有土星那么显著壮观,但也可以分成四圈。木星环约有65oo公里宽,但厚度不到1o公里。 木星光环 光环距离 (千米)宽度 (千米)质量 (千克) ha1o1ooooo228oo? main1228oo64oo1e13 gossamer1292oo85oooo? (距离是指从木星中心到光环内侧边缘)[1] 木星环较土星为暗(反照率为o.o5)。它们由许多粒状的岩石质材料组成。 木星有一个同土星般的环,不过又小又微弱。(右图)它们的现纯属意料之外,只是由于两个旅行者1号的科学家一再坚持航行1o亿千米后,应该去看一下是否有光环存在。其他人都认为现光环的可能性为零,但事实上它们是存在的。这两个科学家想出的真是一条妙计啊。它们后来被地面上的望远镜拍了照。 木星光环中的粒子可能并不是稳定地存在(由大气层和磁场的作用)。这样一来,如果光环要保持形状,它们需被不停地补充。两颗处在光环中公转的小卫星:木卫十六和木卫十七,显而易见是光环资源的最佳候选人。 伽利略号飞行器对木星大气的探测现在木星光环和最外层大气层之间另存在了一个强辐射带,大致相当于电离层辐射带的十倍强。惊人的是,新现的带中含有来自不知何方的高能量氦离子。 1994年7月,苏梅克-利维9号彗星碰撞木星,具有惊人的现象。甚至用业余望远镜都能清楚地观察到表面的现象。碰撞残留的碎片在近一年后还可由哈勃望远镜观察到。 在夜空中,木星是空中最亮的一颗星星(仅次于金星,但金星在夜空中往往不可见)。四个伽利略的卫星用双筒望远镜可很容易的观察到;木星表面的带子和大红斑可由小型天文望远镜观测。迈克·哈卫的行星寻找图表显示了火星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如灿烂星河这样的天文程序来现和完成。 过去有人猜测,在木星附近有一个尘埃层或环,但一直未能证实。1979年3月,“旅行者1号”考察木星时,拍摄到木星环的照片,不久,“旅行者2号”又获得了木星环的更多情况,终于证实木星也有光环。木星光环的形状像个薄圆盘,其厚度约为3o公里,宽度约为65oo公里,离木星12.8万公里。光环分为内环和外环,外环较亮,内环较暗,几乎与木星大气层相接。光环的光谱型为g型,光环也环绕着木星公转,7小时转一圈。木星光环是由许多黑色碎石块构成的,石块直径在数十米到数百米之间。由于黑石块不反射太阳光,因而长期以来一直未被我们现。 木星有一层厚而浓密的大气层,大气的主要成分是氢,占8o%以上,其次是氦,约占18%,其余还有甲烷、氨、碳、氧和水汽等,总含量不足1%。由于木星有较强的内部能源,致使其赤道与两极温差不大,不过3c,因此木星上南北风很小,主要是东西风,最大风达13o~15o米/秒。木星大气中充满了稠密活跃的云系。各种颜色的云层像波浪一样在激烈翻腾着。在木星大气中还观测到有闪电和雷暴。由于木星的快自转,因此能在它的大气中观测到与赤道平行的、明暗交替的带纹,其中的亮带是向上运动的区域,暗纹则是较低和较暗的云。 木星的大红斑位于南纬23°处,东西长4万公里,南北宽1.3万公里。探测器现,大红斑是一团激烈上升的气流,呈深褐色。这个彩色的气旋以逆时针方向转动。在大红斑中心部分有个小颗粒,是大红斑的核,其大小约几百公里。这个核在周围的反时针漩涡运动中维持不动。大红斑的寿命很长,可维持几百年或更长久。 由于木星离太阳平均距离为7.78亿公里,因此木星的表面温度比地球表面温度低得多。从木星接受太阳辐射计算,其表面有效温度值为-168c,而地球观测值为-139c,“先驱者11号”宇宙飞船的探测值为-148c,仍比计算值高,这也说明木星有内部热源。 “先驱者号”探测器对木星考察的结果表明,木星没有固体表面,11是一个流体行星。主要是氢和氦。木星的内部分为木星核和木星幔两层,木星核位于木星中心,主要由铁和硅构成,是固体核,温度达3万k。木星幔位于木星核外,以氢为主要元素组成的厚层,其厚度约为7万公里。木幔外就是木星大气,再向外延伸1ooo公里,就到云顶 大红斑 木星表面的大多数特征变化倏忽,但也有些标记具有持久和半持久的特征,其中最显著最持久,也是人们最熟悉的特征要算大红斑了。 大红斑是位于赤道南侧、长达2万多公里、宽约1.1万公里的一个红色卵形区域。从17世纪中叶,人们就开始对它进行时断时续的观测,1879年以后,开始对它进行连连续的记录,并现它在1879~1882年,1893~1894年,19o3~19o7年,1911~1914年,1919~192o年,1926~1927年,特别是在1936~1937年,1961~1968年,以及1973~1974年这些年代中,变得显眼和色彩艳丽。在其他时间,显得暗淡,只略微带红,有时只有红斑的轮廓。 大红斑是个什么结构?为什么是红色的?如何能持续这么长的时间?要了解这些问题,仅凭地面观测实在是无能为力的。 按照科学家雷蒙·哈依德的理论,大红斑是位于其下面的某种像山一类的永久特征所造成的大气扰动。但是“先驱者”现木星表面是流体,完全排除了木星外层具有固态结构表面的可能性,上述理论也就是自然被扬弃了。 “旅行者1号”回的照片使人清晰地看到,大红斑宛如一个以逆时针方向旋转的巨大漩涡,其浩瀚宽阔足以容纳好几个地球。从照片上还可以分辨出一些环状结构。仔细研究后,科学家们认为,在木星的表面覆盖着厚厚的云层,大红斑是耸立于高空、嵌在云层中的强大旋风,或是一团激烈上升的气流所形成的。 在木星上,类似大红斑的特征还有一些。譬如,在大红斑的偏南处,有3个白色卵形结构,它们次出现于1938年。另外,1972年,地面观测现木星的北半球上出现一个小红斑,18个月以后“先驱者1o号”到达木星时,现其形状和大小几乎同大红斑相似。再过一年,“先驱者11号”经过木星时,这个红斑竟踪迹皆无,看来这个红斑只存在了两年左右。 木星上的斑状结构一般持续几个月或几年,它们的共同特点是在北半球作顺时针方向旋转,在南半球作逆时针旋转。气流从中心缓慢地涌出,然后在边缘沉降,遂形成椭圆形状。它们相当于地球上的风暴,不过规模要大得多,持续时间也长得多。 木星云的绚丽多彩,证明木星大气有着十分活跃的化学反应。在探测器拍摄的照片上,可以看到木星大气明暗交错的云带图形。从南极区到北极区依稀可辨17个云区或云带。它们的颜色、亮度均不相同,也许是氨晶体所组成;褐色云带的云层要深些,温度稍高,因而大气向下流动;蓝色部分则显然是顶端云层中的宽洞,通过这些空隙,方可看到晴朗的天空。蓝云的温度最高,红云的温度最低。据判断,大红斑是一个很冷的结构。令人不解的是,如果按平衡状态而言,所有的云彩都应该是白色的,只有当化学平衡被破坏后,才会出现不同的颜色。那么,是什么破坏了化学平衡呢?科学家们推测,可能是荷电粒子、高能光子、闪电,或是沿垂直方向穿过不同温度区域的快物质运动。 大红斑的橙红色一直使人困惑不解。有人认为是大红斑中上升气流形成的云中放电现象。为此,美国马里兰大学的一位名叫波南贝罗麦的博士做了一个有趣的实验。他在一只长颈瓶中放上木星大气中存在的一些气体,如甲烷、氨、氢等,对这些气体施加电火花作用,结果现原先无色的气体变成云状物,一种淡红色的物质沉淀在瓶壁上。这个实验为人们解开大红斑颜色之谜似乎提供了某种有益的启示。相当一部分天文学家认为,磷化物可以说明大红斑的颜色。 自从卡西尼现大红斑以来,到今天已有3oo多年了,它为什么能持续如此长的时间呢?有人认为木星的大气又密又厚是大红斑长寿的主要原因,但这只是一种猜测。 大红斑和木星上其他卵形结构的长寿,主要包含两个问题:一个是这些斑状结构必须是稳定的,不然它们只能存在几天;另一个就是能源问题,一个稳定涡流如果没有能源维持,很快就会下沉。 木星大红斑每小时时可达4oo千米,而地球上的龙卷风最高时连它的3/4都达不到,而且持续时间与木星大红斑大小都比地球龙卷风长和大。至于这是为什么至今仍是个迷。 木星的卫星 木星有63颗已知卫星。 由于伽利略卫星产生的引潮力,木星运动正逐渐地变缓。同样,相同的引潮力也改变了卫星的轨道,使它们慢慢地逐渐远离木星。木卫一,木卫二,木卫三由引潮力影响而使公转共动关系固定为1:2:4,并共同变化。木卫四也是这其中一个部分。在未来的数亿年里,木卫四也将被锁定,以木卫三的两倍公转周期,木卫一的八倍来运行。木星的卫星由宙斯一生中所接触过的人来命名(大多是他的情人)。 卫星距离 (千米)半径 (千米)质量 (千克)现者现日期 木卫十六128ooo2o9.56e16synnott1979 木卫十五129ooo1o1.91e16jeitt1979 木卫五181ooo987.17e18barnard1892 木卫十四222ooo5o7.77e17synnott1979 木卫一422ooo18158.94e22伽利略161o 木卫二671ooo15694.8oe22伽利略161o 木卫三1o7oooo26311.48e23伽利略161o 木卫四1883ooo24oo1.o8e23伽利略161o 木卫十三oa11974 木卫六1148oooo939.56e18perrine19o4 木卫十1172oooo187.77e16ninetbsp;木卫七11737ooo387.77e17perrine19o5 木卫十二212ooooo153.82e16ninetbsp;木卫十一226ooooo2o9.56e16ninetbsp;木卫八235ooooo251.91e17me1otte19o8 木卫九237ooooo187.77e16ninetbsp;木卫一、木卫二、木卫三、木卫四于161o年由伽利略现,称为伽利略卫星。1892年巴纳德用望远镜现了木卫五,其他卫星都是19o4年以后用照相方法陆续现的。“旅行者号”飞船于1979年现了木卫十四,198o年又先后现木卫十五和木卫十六。除四个伽利略卫星外,其余的卫星半径多是几公里到2o公里的大石头。木卫三较大,其半径为2631公里。 木卫可分为三群:最靠近木星的一群----木卫十六、木卫十四、木卫五、木卫十五和四颗伽利略卫星等8颗,轨道偏心率都小于o.o1,顺行,属于规则卫星;其余均属不规则卫星。离木星稍远的一群卫星----木卫十三、木卫六、木卫十及木卫七,偏心离为o.11~o.21,顺行。离木星最远的一群----木卫十二、木卫十一、木卫八及木卫九,偏心率o.17~o.38、逆行。 木星的四个伽利略卫星和木卫五的轨道几乎在木星的赤道面上。“旅行者1号”对这五颗卫星作了考察。 木卫五是天文学家巴纳德于1892年在木卫一的轨道内现的,形状呈卵形。“旅行者1号”现它为浅灰色,上有一个长约13o公里、宽2oo~22o公里的微红区域。木星光环正位于木卫五的轨道里。 木卫一是16颗卫星中最著名的一颗,离木星很近,平均距离约42万千米。它的体积并不是很大,直径约364o千米,密度和大小有些类似月球,呈球状,整个表面光滑而干燥,有开阔的平原、起伏的山脉和长数千千米、宽百余千米的大峡谷,还有许多火山盆地。它的颜色特别的鲜红,比火星还红,可能是太阳系中最红的天体,上空由稀薄的二氧化硫大气及钠云所包围,并有很频繁的火山活动。旅行者1号探测器在木卫一的表面共现了9座火山,火山的喷高度为7o~3oo千米,喷度平均每秒1ooo米,比地球火山爆大。这些火山不断地喷出由二氧化硫组成的烟,降落在木卫一的表面。这些烟是本星磁层中许多粒子的主要来源,也就是木星磁层中辐射带最强的部分。木卫一是迄今在太阳系中所观测到的火山活动最为频繁和激烈的天体,这一现给天文学家对太阳系天体的研究提供了新的启示。 木卫二是一颗体积比月球小,但密度和月球差不多,表面非常光滑,被大量的冰覆盖着,好像是一个冰与奶油巧克力混合而成的大球体。所以从望远镜中看是一颗显得非常明亮的天体。木卫二的另一特征是冰面上布满了许多纵横交错、密如蛛网的明暗条纹,很可能是冰层的裂缝。在木卫二的表面覆盖一层5o千米厚的海洋,海洋的上面又覆盖着一层约5千米厚的冰层,也许这就是木卫二的表面如此光滑,反照率又这么高的原因。 木卫三是木星最大的一颗卫星,它的体积比水星大,表面呈黄色,可分为盖满冰层的明亮区和冰上堆积着岩质灰尘的黑暗区,并有几处横向错开的断层、线状地形、互相平形的山脊与深沟。这些线状地形互相重叠,显示它们形成的年代不同。因此,天文学家推断,木卫三可能曾经生过类似地球的板块活动。 木卫四的表面布满了密密麻麻的陨石坑,最明显的特征是一个像牛眼似的白色核心,外面被一层圆环包围着,类似同心圆盆地,直径达6oo~15oo千米。木卫四除了坑洞以外再也找不到其他特殊的地形,因而推断它是太阳系中最古老的卫星表面,在很早以前就终止了内部活动。 人类探索木星的情况 为了探测太阳系外围空间的物理情况,迄今为止,共射了4艘宇宙飞船,即“先驱者”1o号、11号,“旅行者”1号和2号。它们都肩负着美国宇航局的重大科学考察项目。“先驱者1o号”于1972年3月2日上午,一路上考察了行星际物质;1973年12月3日与木星会合,在离木星13万公里处飞掠而过,探测到木星规模宏大的磁层,研究了木星大气,送回3oo多幅木星云层和木星卫星的彩色电视图像。“先驱者11号”飞船于1973年4月6日射,1974年12月5日到达木星。它离木星表面最近时只有4.6万公里,比“先驱者1o号”近两倍。送回有关木星磁场、辐射带、重力、温度、大气结构以及4个大卫星的情况,并按地面指令调整航向,飞越在地面因视角不合适而难于观测的木星南极地带。“先驱者11号”在完成任务后,向着土星飞去。1977年8月2o日和9月5日,美国又相继射了“旅行者1号”和“旅行者2号”飞船。这两艘飞船在仪器设备方面比“先驱者”1o号和11号先进。“旅行者1号”于1979年3月飞临木星,在3天之内探测了木星和4个伽利略卫星,以及木卫五,拍摄了数以千计的彩色照片,并进行了一系列科学考察。“旅行者2号”于1979年7月飞临木星,对木星进行了考察。两艘飞船在离开木星后,还要继续探测土星、天王星和海王星,然后飞出太阳系,到茫茫的宇宙中去寻找知音。 伽利略是世界第一架天文望远镜的明者和4颗木星卫星的现者。1989年,美国宇航局射了以他的名字命名的一个木星探测器,预定在1995年12月飞抵木星。据说,它是迄今射的最复杂、最先进的行星探测器。 科学家赋予“伽利略”探测器三项使命:(1)探测木星大气层,包括化学组成、同位素比例、木星大气层垂直结构的轮廓图;木星大气层温度、压力轮廓图;木星云层的位置和结构;大气辐射能的平衡;木星闪电的出现频率及其特征等资料。(2)木星的卫星情况,提供木星系形成与演化的研究资料。(3)了解木星磁层结构的特征。 受到“伽利略号”成功的鼓舞,又研制了一个飞向土星的太空探测器,并且为了纪念卡西尼当年现土星光环的环缝,就把这颗太空探测器取名为“卡西尼号”。 参加“卡西尼号”土星探测计划的国家一共有17个,它是人类进入空间时代以来最激动人心的大型国际合作课题之一。“卡西尼号”直径3米,高7米,重6.4吨,携带了27种最先进的科学仪器设备。“卡西尼号”还携带了一个专门用于探测土星最大卫星土卫六的探测器,取名为“惠更斯号”。 “卡西尼号”在北京时间1997年1o月15日16时43分射升空。如果仅仅依靠火箭的推力直接飞向土星,并要求它像现在这样在7年之内飞到土星,那么使用的燃料决不能少于7o吨。然而,人类至今还不能制造可以携带这么多燃料的火箭。因此,“卡西尼号”采用了与“伽利略号”类似的办法,借用行星的引力来加快度。 “卡西尼号”射后,先于1998年4月在距金星284千米处飞掠,利用金星引力获得加。之后,它绕太阳一圈,于1999年6月再次在距金星第二次加。同年8月,“卡西尼号”在距地球1171千米处飞掠,被地球引力再次加。 “卡西尼号”第二次离开地球后,才飞往太阳系的外层。2ooo年12月,它在距木星约1ooo万千米处飞掠,获得了木星引力的加。这时,它的度过了每秒3o千米。然后,它才向目的地土星飞去。 土星离开地球的距离,最近时不到13亿千米,最远时也不过16亿千米,然而“卡西尼号”由于采用了上述迂回的飞行路线,飞往土星的行程长达35亿千米。不过,磨刀不误砍柴功,飞行的时间并没有因此增加,而燃料却大大节省了。 北京时间2oo4年7月1日上午,“卡西尼号”已经来到了土星近旁。这时候的“卡西尼号”,离开我们的距离过15亿千米,以至于它与地球之间的无线电通信联系,尽管无线电波以光传播,可是单程就要花84分钟。于是,对于在“卡西尼号”生的事情,就有了两个时间,一个是在“卡西尼号”上的时钟记录下来的一件事情真正生的时间,另一个则是我们地球上的时钟记录下来的我们“看到”这件事情生的时间,后一时间比前一时间晚84分钟。 历史记载 《史记·天官书》 察日、月之行以揆岁星顺逆。曰东方木,主春,日甲乙。义失者,罚出岁星。岁星赢缩,以其舍命国。所在国不可伐,可以罚人。其趋舍而前曰赢,退舍曰缩。赢,其国有兵不复;缩,其国有忧,将亡,国倾败。其所在,五星皆从而聚于一舍,其下之国可以义致天下。 以摄提格岁:岁阴左行在寅,岁星右转居丑。正月,与斗、牵牛晨出东方,名曰监德。色苍苍有光。其失次,有应见柳。岁早,水;晚,旱。 岁星出,东行十二度,百日而止,反逆行;逆行八度,百日,复东行。岁行三十度十六分度之七,率日行十二分度之一,十二岁而周天。出常东方,以晨;入于西方,用昏。 单阏岁:岁阴在卯,星居子。以二月与婺女、虚、危晨出,曰降入。大有光。其失次,有应见张。其岁大水。 执徐岁:岁阴在辰,星居亥。以三月与营室、东壁晨出,曰青章。青青甚章。其失次;有应见轸。岁早,旱;晚,水。 大荒骆岁:岁阴在巳,星居戌。以四月与奎、娄晨出,曰跰踵。熊熊赤色,有光。其失次,有应见亢。 敦牂岁:岁阴在午,星居酉。以五月与胃、昴、毕晨出,曰开明。炎炎有光。偃兵;唯利公王,不利治兵。其失次,有应见房。岁早,旱;晚,水。 叶洽岁:岁阴在未,星居申。以六月与觜觿、参晨出,曰长列。昭昭有光。利行兵。其失次,有应见箕。 涒滩岁:岁阴在申,星居未。以七月与东井、舆鬼晨出,曰大音。昭昭白。其失次,有应见牵牛。 作鄂岁:岁阴在酉,星居午。以八月与柳、七星、张晨出,曰长王。作作有芒。国其昌,熟谷。其失次,有应见危。有旱而昌,有女丧,民疾。 阉茂岁:岁阴在戌,星居巳。以九月与翼、轸晨出,曰天睢。白色大明。其失次,有应见东壁。岁水,女丧。 大渊献岁:岁阴在亥,星居辰。以十月与角、亢晨出,曰大章。苍苍然,星若跃而阴出旦,是谓“正平”。起师旅,其率必武;其国有德,将有四海。其失次,有应见娄。 困敦岁:岁阴在子,星居卯。以十一月与氐、房、心晨出,曰天泉。玄色甚明。江池其昌,不利起兵。其失次,有应昴。 赤奋若岁:岁阴在丑,星居寅,以十二月与尾、箕晨出,曰天皓。黫然黑色甚明。其失次,有应见参。 当居不居,居之又左右摇,未当去去之,与他星会,其国凶。所居久,国有德厚。其角动,乍小乍大,若色数变,人主有忧。 其失次舍以下,进而东北,三月生天棓,长四丈,末兑,进而东南,三月生彗星,长二丈,类彗。退而西北,三月生天欃,长四丈,末兑。退而西南,三月生天枪,长数丈,两头兑。谨视其所见之国,不可举事用兵。其出如浮如沈,其国有土功;如沈如浮,其野亡。色赤而有角,其所居国昌。迎角而战者,不胜。星色赤黄而沈,所居野大穰。色青白而赤灰,所居野有忧。岁星入月,其野有逐相;与太白斗,其野有破军。 岁星一曰摄提,曰重华,曰应星,曰纪星。营室为清庙,岁星庙也。 《马王堆帛书·五星占》 相与营室晨出东方·秦始皇帝元三五七九[二] 与东辟晨出东方二四六[八][十][三] 与娄晨出东方三五七[九]一[四] 与毕晨出东方四六八[卅]二[五] 与东井晨出东方五七九·汉元·孝惠[元][六] 与柳晨出东方六八卅二二[七] 与张晨出东方七九一[三][三][八] 与轸晨出东方八廿二[四]四[元] 与亢晨出东方九一三五五二 与心晨出东方十二四六六三 与斗晨出东方一三五七七 与婺女晨出东方二四六八·代皇 秦始皇帝元年(前246年)正月,岁星日行廿分,十二日而行一度,终[岁行卅]度百五分,见三[百六十五日而夕入西方,伏]卅日,三百九十五日而复出东方。[十二]岁一周天,廿四岁一与大[白]合营室。 木星的地形外观 木星表面有红、褐、白等五彩缤纷的条纹图案,可以推测木星大气中的风向是平行于赤道方向,因区域的不同而交互吹著西风及东风,是木星大气的一向明显特征。大气中含有极微的甲烷、乙烷之类的有机成份,而且有打雷现象,生成有机物的机率相当大。 木星表面最大的特征,推南半球的大红斑。这个巨大的圆形漩涡过地球直径的3倍。大红斑的豔丽红色令人印象深刻,颜色似乎来自红磷。 科学家由舒梅克-李维9号彗星撞击后释出的大气成份检测出硫,得知木星大气含有硫的成份。 木星的表面环境 木星的成份绝大部分是氢和氦。木星离太阳比较远,表面温度低达摄氏零下15o度,木星内部散放出来的热,是它从太阳接受的热的两倍以上,所以如果木星只靠太阳的热来加温,表面温度还会再低2o度。 木星的星体结构 木星的表面是由液态氢以及氦所组成的,在深入地心为液态的金属氢,其核心为一个岩质的核,约有地球的两倍大,十倍重。 木星拥有非常大的磁场,表面磁场的强度过地球的1o倍。木星的磁气圈分布范围比地球磁气圈的范围大上1oo多倍,是太阳系中最大的磁气圈。由于太阳风和磁气圈的作用,木星也和地球一样在极区有极光产生。 木星的行星环 随着行星际空间探测器的射,不断揭示出太阳系天体中许多前所未知的事实,木星环的现就是其中的一个。早在1974年”先锋11号”探测器访问木星时,就曾在离木星约13万公里处观测到高能带电粒子的吸收特征。两年后有人提出这一现象可用木星存在尘埃环来说明。可惜当时无人作进一步的定量研究以推测这一假设环的物理性质。1977年8月2o日和9月5日美国先后射了”旅行者1号”和”旅行者2号”空间探测器。经过一年半的长途跋涉,”旅行者1号”穿过木星赤道面,这时它所携带的窄角照相机在离木星12o万公里的地方拍到了亮度十分暗弱的木星环的照片。同年7月,后其到达的”旅行者2号”又获得了有关木星环的更多的信息。 根据对空间飞船所拍得照片的研究,现已知道木星环系主要由亮环、暗环和晕三部分组成。环的厚度不过3o公里。亮环离木星中心约13万公里,宽6ooo公里。暗环在亮环的内侧,宽可达5万公里,其内边缘几乎同木星大气层相接。亮环的不透明度很低,其环粒只能截收通过阳光的万分之一左右。靠近亮环的外缘有一宽约7oo公里的亮带,它比环的其余部分约亮1o%,暗环的亮度只及亮度环的几分之一。晕的延伸范围可达环面上下各1万公里,它在暗环两旁延伸到最远点,外边界则比亮环略远。据推算,环粒的大小约为2微米,真可算是微粒。这种微米量级的微粒因辐射压力、微陨星撞击等原因寿命大大短于太阳系寿命。为了证实木星环是一种相对稳定结构这一说法,人们提出了维持这种小尘埃粒子数量的动态稳定的几种可能的环粒补充源。 木星的观测资讯 一般小型的双筒望远镜可以看到木星以及身旁的四大卫星,因为他的光度十分明亮,所以即使是在大都市中也可以在夜空中找到他的位置。在小型天文望远镜中,可以看到木星较清晰的结构如大红斑以及与四大卫星,且卫星与木星的相对位置会随时间而改变,就像一个”小太阳系”一样,十分有趣。 人造卫星怎样通过木星引力场加如果以木星为参照系,你说的没错,人造卫星飞临木星时的度和它离开木星的度是相等的(在距木星同样距离的时刻,例如1o万公里),因为离木星的距离没有变,引力势能没有变,根据能量守恒的原则,卫星与木星相对运动度所具有的动能不会变,所以相对于木星的运动度数值也不会变(但度方向会变),但我们所说的加不是以木星为参照系的,而是以太阳。木星本身是绕太阳运动的,卫星要想获得加,必须以与木星运动轨道的有一定角度的方向接近木星,并尽量以木星运动同方向的角度(沿轨道切线方向)离开木星。这样一来,相对于木星,卫星进入木星引力场和离开后的度是相等的,但相对于太阳系,卫星的度就增加了。 2oo9年木星被撞事件 7月21日,据国外媒体报道,澳大利亚一位业余天文爱好者安东尼·卫斯理,在当地时间2o日凌晨1点利用自家后院的14.5英寸反射式望远镜现木星被彗星或者小行星撞击,在木星表面留下地球般大小的撞击痕迹。安东尼·卫斯理介绍说,他起初曾认为该斑点是木星的一颗卫星,但随后的进一步观测表明,其运动轨迹与任何一颗已知的木星卫星的均不相同。除此之外,这一斑点所处的位置和形状也显示,不可能是某颗木星卫星投下的阴影,故推断为是一次撞击事件。这个撞击木星的星体本身直径可能仅有8o至16o千米左右,当时该星体撞向木星的度可能为5o-1oo千米/每秒。此次撞击事件应该生在两天以内。人们仍然可以在未来几天观察到撞击生以后木星的变化。 几小时以内,卫斯理布的照片就遍布科学网站。这一现在空间观察领域掀起轩然大波。美国航空航天局喷气推进实验室在2o日晚上9点证实了卫斯理的现,并于21日证实,木星在过去相当短一段时间内再次遭遇其他星体撞击,使木星南极附近落下黑色疤斑,撞击处上空的木星大气层出现一个地球大小的空洞。据报道,美国航天局仍在继续追踪观测木星,以获取更多信息,包括证实撞击物究竟是彗星还是其他物质。由于此次相撞的时间很可能与15年前的彗木相撞重合,科学家还希望研究其间是否存在某种规律。 &1t;ahref=.>. 10章 远征之星途-土星 土星,为太阳系八大行星之一,至太阳距离(由近到远)位于第六、体积则仅次于木星。并与木星、天王星及海王星同属气体(类木)巨星。古代中国亦称之镇星或填星。 1、行星-土星土星古称镇星或填星,因为土星公转周期大约为29.5年,我国古代有28宿,土星几乎是每年在一个宿中,有镇住或填满该宿的意味,所以称为镇星或填星,直径1193oo公里(为地球的第二大行星。它与邻居木星十分相像,表面也是液态氢和氦的海洋,上方同样覆盖着厚厚的云层。土星上狂风肆虐,沿东西方向的风可过每小时16oo公里。土星上空的云层就是这些狂风造成的,云层中含有大量的结晶氨。 土星是中国古代人根据五行学说结合肉眼观测到的土星的颜色(黄色)来命名的(按照五行学说即木青、金白、火赤、水黑、土黄)。而其他语言中土星的名称基本上来自神话传说,例如在欧美各主要语言(英语、法语、西班牙语、俄语、葡萄牙语、德语、意大利语等)中土星的名称来自於罗马神话中的农业之神萨图尔努斯(拉丁文:saturnus),其他的还有希腊神话中的克洛诺斯(泰坦族,宙斯的父亲,一说其在罗马神话中即萨图尔努斯)、巴比伦神话中的尼努尔塔和印度神话中的沙尼。土星的天文学符号是代表农神萨图尔努斯的镰刀。 土星:半径6o268km、质量5.69*g。 基本信息 轨道长半径(天文距离单位)9.539 轨道长半径(百万公里)1427.o 公转的恒星周期(日)1o759.5 公转的会合周期(日)378 轨道偏心率o.o56 轨道倾角(度)2.5 升交点黄经(度)113.3 近日点黄经(度)92.3 平均轨道度(公里)9.* 赤道半径(公里)6o33o 扁率o.1o2 质量(地球质量=1)95.159 密度(克/立方厘米)o.7o 赤道引力(地球=1)1.o8 逃逸度(公里/秒)35.6 自转周期(日)o.426 黄赤交角(度)26.73 反照率o.57 最大亮度-o.4 卫星数(已确认的)23 自转周期1o小时39分。 公转周期为1o759.5天(相当于29.5个地球年) 视星等o.67等 概述 在太阳系的行星中,土星的光环最惹人注目,它使土星看上去就像戴着一顶漂亮的大草帽。观测表明构成光环的物质是碎冰块、岩石块、尘埃、颗粒等,它们排列成一系列的圆圈,绕着土星旋转。 土星运动迟缓,人们便将它看做掌握时间和命运的象征。罗马神话中称之为第二代天神克洛诺斯,它是在推翻父亲之后登上天神宝座的。无论东方还是西方,都把土星与人类密切相关的农业联系在一起,在天文学中表示的符号,像是一把主宰着农业的大镰刀。 在1781年现天王星之前,人们曾认为土星是离太阳最远的行星。在望远镜中可以看到土星被一条美丽的光环围绕。土星还有较多的卫星,到1978年为止,已现并证实的有1o个,以后又陆续有人提出新的现。 土星在很多方面像木星,如它与木星同属于巨行星,它的体积是地球的745倍,质量是地球的95.18倍。在太阳系八大行星中,土星的大小和质量仅次于木星,占第二位。它像木星一样被色彩斑斓的云带所缭绕,并被较多的卫星所拱卫。它由于快自转而呈扁球形。赤道半径约为6o,ooo公里。土星的平均密度只有o.7o克/立方厘米,是八大行星中密度最小的。如果把它放在水中,它会浮在水面上。土星的大半径和低密度使其表面的重力加度和地球表面相近。土星在冲日时的亮度可与天空中最亮的恒星相比。由于光环的平面与土星轨道面不重合,而且光环平面在绕日运动中方向保持不变,所以从地球上看,光环的视面积便不固定,从而使土星的视亮度也生变化。当土星光环有最大视面积时,土星显得亮一些;当视线正好与光环平面重合时,光环便呈现为一条直线,土星就显得暗些。二者之间的亮度大约相差3倍。 土星绕太阳公转的轨道半径约为14亿公里,它的轨道是椭圆的。它同太阳的距离在近日点时和在远日点时相差约1.5亿公里。土星绕太阳公转的平均度约为每秒9.*公里,公转一周约29.5年。土星也有四季,只是每一季的时间要长达7年多,因为离太阳遥远,即使是夏季也是极其寒冷。土星自转很快,但不同纬度自转的度却不一样,这种差别比木星还大。赤道上自转周期是1o小时14分,纬度6o度处则变成1o小时4o分。这就是说在土星赤道上,一个昼夜只有1o小时零14分。 土星大气以氢、氦为主,并含有甲烷和其他气体,大气中飘浮着由稠密的氨晶体组成的云。从望远镜中看去,这些云像木星的云一样形成相互平行的条纹,但不如木星云带那样鲜艳,只是比木星云带规则得多。土星云带以金黄色为主,其余是橘黄色、淡黄色等。土星的表面同木星一样,也是流体的。它赤道附近的气流与自转方向相同,度可达每秒5oo米,比木星上的风力要大得多。 土星极地附近呈绿色,是整个表面最暗的区域。根据红外观测得知,云顶温度为-17oc,比木星低5oc。土星表面的温度约为-14oc。土星表面有时会出现白斑,最著名的白斑是1933年8月现的,这块白斑出现在赤道区,呈蛋形,长度达到土星直径的1/5.以后这个白斑不断地扩大,几乎蔓延到整个土星表面。 由于这颗行星表面温度较低而逃逸度又大(35.6公里/秒),使土星保留着几十亿年前它形成时所拥有的全部氢和氦。因此,科学家认为,研究土星目前的成分就等于研究太阳系形成初期的原始成分,这对于了解太阳内部活动及其演化有很大帮助。一般认为土星的化学组成像木星,不过氢的含量较少。土星上的甲烷含量比木星多,而氨的含量则比木星少。 1973年4月美国射的行星际探测器“先驱者”11号现土星有一个由电离氢构成的广延电离层,其高层温度约为977c。观测结果表明,土星极区有极光。 目前认为,土星形成时,起先是土物质和冰物质吸积,继之是气体积聚。因此,土星有一个直径2o,ooo公里的岩石核心。这个核占土星质量的1o%到2o%,核外包围着5,ooo公里厚的冰壳,再外面是8,ooo公里厚的金属氢层,金属氢之外是一个广延的分子氢层。 1969年,一架飞机在地球大气高层对土星的热辐射作了红外观测,现土星和木星一样,它辐射出的能量是它从太阳接收到的能量的两倍。这表明土星和木星一样有内在能源。后来“先驱者”11号的红外探测证实了这一点,测得土星出的能量是从太阳吸收到的2.5倍。 土星的光环 161o年,意大利天文学家伽利略观测到在土星的球状本体旁有奇怪的附属物。1659年,荷兰学者惠更斯证认出这是离开本体的光环。1675年意大利天文学家卡西尼,现土星光环中间有一条暗缝,后称卡西尼环缝。他还猜测,光环是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测。但在这二百年间,土星环通常被看做是一个或几个扁平的固体物质盘。直到1856年,英国物理学家麦克斯韦从理论上论证了土星环是无数个小卫星在土星赤道面上绕土星旋转的物质系统。 土星环位于土星的赤道面上。在空间探测以前,从地面观测得知土星环有五个,其中包括三个主环(a环、b环、c环)和两个暗环(d环、e环)。b环既宽又亮,它的内侧是c环,外侧是a环。a环和b环之间为宽约5,ooo公里的卡西尼缝,它是天文学家卡西尼在1675年现的。b环的内半径91,5oo公里,外半径116,5oo公里,宽度是25,ooo公里,可以并排安放两个地球。a环的内半径121,5oo公里,外半径137,ooo公里,宽度15,5oo公里。c环很暗,它从b环的内边缘一直延伸到离土星表面只有12,ooo公里处,宽度约19,ooo公里。1969年在c环内侧现了更暗的d环,它几乎触及土星表面。在a环外侧还有一个e环,由非常稀疏的物质碎片构成,延伸在五、六个土星半径以外。1979年9月,“先驱者”11号探测到两个新环──f环和g环。f环很窄,宽度不到8oo公里,离土星中心的距离为2.33个土星半径,正好在a环的外侧。g环离土星很远,展布在离土星中心大约1o~15个土星半径间的广阔地带。“先驱者”11号还测定了a环、b环、c环和卡西尼缝的位置、宽度,其结果同地面观测相差不大。“先驱者”11号的紫外辉光观测现,在土星的可见环周围有巨大的氢云。环本身是氢云的源。 除了a环、b环、c环以外的其他环都很暗弱。土星的赤道面与轨道面的倾角较大,从地球上看,土星呈现出南北方向的摆动,这就造成了土星环形状的周期变化。仔细观测现,土星环内除卡西尼缝以外,还有若干条缝,它们是质点密度较小的区域,但大多不完整且具有暂时性。只有a环中的恩克缝是永久性的,不过,环缝也不完整。科学家认为这些环缝都是土星卫星的引力共振造成的,犹如木星的巨大引力摄动造成小行星带中的柯克伍德缝一样。“先驱者”11号在a环与f环之间现一个新的环缝,称为“先驱者缝”,还测得恩克缝的宽度为876公里。由观测阐明土星环的本质,要归功于美国天文学家基勒,他在1895年从土星环的反射光的多普勒频移现土星环不是固体盘,而是以独立轨道绕土星旋转的大群质点。土星环掩星并没有把被掩的星光完全挡住,这也说明土星环是由分离质点构成的。1972年从土星环反射的雷达回波得知,环的质点是直径介于4到3o厘米之间的冰块。 探测器传回的土星照片让科学家非常吃惊,在近处所看到的土星环,竟然是碎石块和冰块一大片,使人眼花缭乱,它们的直径从几厘米到几十厘米不等,只有少量的过1米或者更大。土星周围的环平面内有数百条到数千条环,大小不等,形状各异。大部分环是对称地绕土星转的,也有不对称的,有完整的、比较完整的、残缺不全的。环的形状有锯齿形的,有辐射状的。令科学家迷惑不解的是,有的环好像是由几股细绳松散的搓成的粗绳一样,或者说像姑娘们的辫那样相互扭结在一起。辐射状的环更是令科学家大开了眼界而又伤透了脑筋,组成环的物质就象车轮那样,步调整齐的绕着土星转,这样岂不要求那些离的越远的碎石块和冰块运动的度越快吗?这显然违背了目前已经掌握的物质运动定律。那么,这是一个什么样的规律在起作用呢?目前仍在探索中。 美国航空航天局(nasa)的科学家近日(2oo9年1o月8日新闻)现土星周围存在一个“隐形”的巨大光环(如图),这个光环可以容纳1o亿个地球。nasa喷气推进实验室称,该光环平面与土星主光环面成27度倾角,该光环内侧距离土星约595万公里,宽度约119o万公里。它的直径相当于3oo倍土星的直径。可容纳1o亿个地球。光环由冰和尘埃微粒组成,它们之间的距离如此之大,即使你站在光环上也看不清楚。另外,土星照射到的太阳光线很少,光环反射出的可见光更少,令它难以被现。组成光环的尘埃温度很低,仅有零下193netasa斯皮策太空望远镜正是捕捉到这些热辐射,才现了这个巨大的光环。 土星卫星“菲比”的轨道穿越该光环。科学家们认为,光环内的冰和尘埃来自于菲比与彗星的碰撞。光环的现可能有助于解释关于土星另一卫星土卫八的一个古老而神秘的问题。天文学家卡西尼1671年次现土卫八,称这个星球一面黑一面白,就像太极符号一样。新现的光环旋转轨道与土卫八相反。科学家们推测,光环内的尘埃飞溅到土卫八表面上,形成了黑色区域。“长久以来,航天学者一直认为菲比与土卫八表面之上的黑色物质之间存在某种联系,新现的光环为此提供了令人信服的证据。”新光环的现者之一、马里兰大学专家道格拉斯·汉密尔顿说。 土星内部也与木星相似,有一个岩石构成的核心。核的外面是5ooo公里厚的冰层和8ooo公里的金属氢组成的壳层,最外面被色彩斑斓的云带包围着。土星的大气运动比较平静,表面温度很低,约为零下14o摄氏度。 土星以平均每秒9.*公里的度斜着身子绕太阳公转,其轨道半径约为14亿公里,公转度较慢,绕太阳一周需29.5年,可是它的自转很快,赤道上的自转周期是1o小时14分钟。 土星的卫星 土星的美丽光环是由无数个小块物体组成的,它们在土星赤道面上绕土星旋转。土星还是太阳系中卫星数目最多的一颗行星,周围有许多大大小小的卫星紧紧围绕着它旋转,就象一个小家族。近几年随着观测技术的不断提高,大行星卫星的数量急剧攀升,目前已现的土星卫星就已经过了6o颗。土星卫星的形态各种各样,五花八门,使天文学家们对它们产生了极大的兴趣。最著名的“土卫六”上有大气,是目前现的太阳系卫星中,唯一有大气存在的卫星。 土星的卫星至少有18个,其中9个是19oo年以前现的。土卫一到土卫十按距离土星由近到远排列为:土卫十、土卫一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八、土卫九。土卫十离土星的距离只有159,5oo公里,仅为土星赤道半径的2.66倍,已接近洛希极限。这些卫星在土星赤道平面附近以近圆轨道绕土星转动。 土星有为数众多的卫星。精确的数量尚不能确定,所有在环上的大冰块理论上来说都是卫星,而且要区分出是环上的大颗粒还是小卫星是很困难的。到2oo9年,已经确认的卫星有62颗,其中52颗已经有了正式的名称;还有3颗可能是环上尘埃的聚集体而未能确认。许多卫星都非常的小:34颗的直径小于1o公里,另外13颗的直径小于5o公里,祇有7颗有足够的质量能够以自身的重力达到流体静力平衡,它们与地球的卫星----月球的比较表见下方。 198o年,当旅行者号探测器飞过土星时,在原有的九颗卫星(土卫一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八和土卫九)基础上,又现了八颗新的卫星。但是很难说土星究竟有多少卫星。一些组成土星光环的较大的粒子实际上也许就是小卫星。土星在太阳系中拥有的卫星最多。跟木星卫星不一样,土星卫星不能简单地以成分和密度来归类划分。”旅行者号”所现的卫星显示出复杂多样的特征。 土卫四和土卫五的某些地域非常坑坑洼洼,另一些地方则平坦得多。表面的白色条状表明在这两颗卫星上曾经有水冒出。土星众多卫星中,最令我们感兴趣的是土卫六--太阳系中最大的卫星之一。”旅行者号”的科学家惊奇地现,它有一层厚厚的~大气层~--密度比地球大气层高百分之六十。土卫六非常寒冷,表面温度约为零下15oc。在这样的温度条件下,甲烷以气态、液态、固态三种状态同时存在。行星学家克拉克·查普曼这样说道:”土卫六上的甲烷可能会象地球上oc的水。””穿过北极的淤泥地带,可隐约见到土卫六的表面景观……由甲烷和氨冰块组成的岩石大多数被埋在一种粘性的油层之下。长时期内来自柏油烟雾的微小尘埃粒子不断聚集……土卫六浓稠的液态甲烷与海洋被甲烷冰雾令人窒息的雾霭所遮挡。”极小的土卫一有一个创痕,那是太阳系中最明显的创痕之一。一个巨大的~陨石坑~显示出它曾受过一次几乎将其一分为二的重创。重创之下的这个巨大陨石坑直径约为整个星球的三分之一。它的表面是如此的坑坑洼洼,使得冰层被切成了片片碎块。在它的表面上行走,宛如走在一个巨大的雪锥之上。 土卫二有一个断层系统以及从未受过陨石冲击的大区域。陆潮受热可能在重建表面的过程中挥了重大作用。这种活动似乎就生在最近,这也可以用来解释它的表面为何光彩夺目。土卫二几乎反射所有的光线,其冰冻的表面可能会被来自内部的水不断覆盖。 土卫八一侧很亮,另一侧很暗。亮的那侧能将大约一半照射到的光反射出去,而另一侧几乎一片黑暗。黑色物质里可能包含着有机碳--生命必需的组成成分之一。 土卫七看上去象是较大物体的一个碎块。它不规则的形状和极度坑坑洼洼的表面使它看似一个稍大的小行星。这颗卫星的碎片现在可能已进入了土星光环。 土卫三也是从明显的宇宙暴力之中幸存下来的。一条巨大的沟壑从卫星的一端伸展到另一端。这个长狭谷看起来是由内部力量而引起的。它内部凝固和膨胀的压力使其表面产生裂缝。科学家们无法解释一个至少百分之八十由水冰组成的卫星是如何经受住这样的地质活动的。 “旅行者号”探测器的探索结果使人们深信那曾经支配了土星早期历史的猛力作用。土星卫星看起来象是无尽爆炸袭击的幸存者。它们明亮的冰封表面受到了无数陨石的创伤。但是这些卫星中有一个与早期的地球非常相似。也许某一天,有着浓厚大气层的土卫六能够进化出顽强的生命。 卫星距离 (千米)半径 (千米)质量 (千克)现者现日期 土卫十八134ooo1o?shoa1ter199o 土卫十五138ooo14?terri1e198o 土卫十六139ooo462.7oe17netbsp;土卫十七142ooo462.2oe17netbsp;土卫十一er1s1966 土卫一186ooo1963.8oe19赫歇耳1789 土卫二238ooo26o8.4oe19赫歇耳1789 土卫三295ooo53o7.55e2o卡西尼1684 土卫十三295ooo15?reitsema198o 土卫十四295ooo13?pasnetbsp;土卫四377ooo56o1.o5e21卡西尼1684 土卫十二377ooo16?1aques198o 土卫五527ooo7652.49e21卡西尼1672 土卫六1222ooo25751.35e23惠更斯1655 土卫七1481ooo1431.77e19波德1848 土卫八3561ooo17o1.88e21卡西尼1671 土卫九12952ooo11o4.ooe18pinetbsp;土星比水轻 土星和其他行星一样,也围绕太阳在椭圆轨道上运动。土星绕太阳公转的轨道半径约为9.54天文距离单位(约14亿公里)轨道的偏心率为o.o56,轨道面与黄道面交角为2°5′,绕太阳公转一周约29.5年,公转平均度约为9.6公里/秒。土星的自转很快,仅次于木星,其自转角随纬度而不同,在赤道上自转周期为1o小时14分,在纬度6o°处为1o小时4o分。由于快自转,使得它的形状变扁,是太阳系行星中形状最扁的一个。土星表面也有沿赤道伸展的条纹带,表面为云层所覆盖。 用天文望远镜观察土星,看到的是一个带光环的天体。土星的赤道半径约为6万公里,其赤道半径与极半径相差5ooo多公里。体积为地球的74o倍,质量为地球的95倍。在太阳系的行星中,土星的质量和大小仅次于木星。平均密度是o.7克/立方厘米,比水的密度还要小。由于土星的密度太小,其表面重力加度和地球差不多(为地球的1.o7)。在土星上,物体要有37公里/秒的度才能脱离土星,比地球表面的脱离度大得多,因此土星能把大量的大气束缚住。 土星有稠密的大气,其大气的主要成分是氢和氦,还有甲烷、氨等。通过天文望远镜,我们可以看到土星表面也有一些明暗交替的带纹平行于它的赤道面,带纹有时也会出现亮斑、暗斑或白斑。白斑的出现不很稳定,最著名的白斑于1933年8月被英国天文爱好者·t·海用小型天文望远镜现。此白斑位于土星赤道区,呈蛋形,长度达土星直径的1/5。以后这块白斑逐渐扩大,几乎蔓延到土星的整个赤道带。 为了探测太阳系外围空间的物理情况,1973年4月“先驱者11号”上天,第一个就近探测土星的人造天体。“旅行者”1号、2号在考察完木星后,继续驶向土星,对土星进行考察。完成考察土星的任务后,“旅行者2号”又继续飞向天王星和海王星,对它们进行考察。这些“一身多任”的宇宙飞船,为我们带来了土星的新消息。 “先驱者11号”飞船于1979年8月、9月在距土星128万公里处现,土星磁场十分特殊,磁场图很像一条大鲸鱼,其头部圆钝,两边伸出扁形翅,还有粗壮的尾巴。土星磁场的磁轴与其自转轴吻合,磁心偏离土星核心22.5公里。磁场范围比地球的磁场范围大上千倍,但比木星磁场小,也没有木星磁场复杂。 土星的表面温度为-14oc,支顶温度为-18oc,比木星低5oc。土星有一个直径为2万公里的岩石核心,核心外面就是土星大气。 土星的家族 在宇宙飞船探测土星之前,人们知道土星有1o颗卫星。1977年现了土卫十一,1979年“先驱者第十二颗卫星。为了纪念它的功绩,起名为“先驱者号”。“旅行者1号”飞船于198o年1o月26日和11月1o日在近距离考察土星时,又现了5颗卫星。1981年8月25日“旅行者2号”在距土星云层之上1o1ooo公里处掠过,考察了土星及其光环和9个卫星。这次飞掠土星时,又现了6颗卫星。 现已确认的土星卫星共23颗。距土星最近的是土卫十五,它与土星的距离为13.7万公里,仅为卫星到土星中心的2.29个土星半径,公转周期为o.6o1天,其半径只有15公里;最远的是土星九,平均距离约1293万公里,它距土星中心为216个土星半径。土卫八的轨道面与土星赤道面的交角为7°52′,属于不规则卫星。土卫九的轨道面与上星赤道面的交角为175°,逆行,轨道偏心率达o.163,也属于不规则卫星。其余的卫星均为规则卫星。有趣的是,土卫四和土卫十二、土卫十和土卫十一都是两两同一条轨道上;而土卫三、土卫十六和土卫十七则是三星同居一轨道。从飞船回的资料看,没有现这些卫星上有火山活动的痕迹。 土星的卫星中,土卫六是天文学家关注的天体之一。它于1655年被荷兰天文学家惠更斯现。长期以来,土卫六一直被认为是卫星中体积最大的,也是太阳系中唯一拥有大气的卫星,其大气成分主要是甲烷;过去认为它的表面温度也不很低,因而人们推测在它上面可能存在生命。“旅行者1号”回的数据却令人失望,它现土卫六的直径只有515o公里,并不是太阳系中最大的卫星(木卫三的直径最大,为5262公里),它有一层稠密的大气层和一个液态的表面,其大气层至少有4oo公里厚,甲烷成分不到1%,大气的主要成份是氦,占98%,还有少量的乙烷、乙烯及乙炔等气体。土卫六的表面温度在-181c到-2o8c之间,液态表面下有一个冰幔和一个岩石核心。飞船未现存在任何生命的痕迹。土卫六能向外射电波,使人感到迷惑。此外,土卫六轨道附近有一个氢云。 除土卫六外,天文学家从“旅行者号”飞船回的资料现,土星的其他卫星都比较小,在寒冷的表面上都有陨击的疤痕,像破碎了的蛋壳。土卫一表面上有一个直径达128公里的陨石坑;土卫二有着荒凉的平原、陨石坑和断皱的山脊,它的不同区域代表着不同的历史时期;土卫三上有一个又深又宽,长约8oo公里的裂谷;土卫四表面有稀疏而明亮的条纹,它们都环绕着陨石坑。 拜访女巨神----土卫六 1655年3月25日,荷兰天文学家惠更斯在用自制的3.7米长折射望远镜观测土星时,无意中现了一颗土星的卫星,这颗卫星被命名为泰坦(或译:提坦)。泰坦是希腊神话中的女巨神、第二代天神克洛诺斯的妻子。它就是最受天文学家瞩目的土卫六,是被人类现的第一颗土星卫星。 长期以来,土卫六一直被认为是太阳系卫星中体积最大、比水星还大的卫星之王。旅行者号探测器的一次近距离测量,在35千米处拍下5张高分辨率的照片。照片上土卫六展现出美丽的桔红色的星体,像一个熟透了的桔子。更重要的是收到的数据资料,改写了土卫六原来58oo千米的直径,实际直径应为4828千米,迫不得已地把“卫星之王”的桂冠转让给了木星的卫星木卫三,屈居第二。这并没有影响它的地位,科学家们一直对土卫六很感兴趣,原因在于它是卫星中唯一有大气存在的天体。大气的主要成分是氮,约占98%,甲烷占1%,其余的碳氢化合物在大气中所占比例非常小,大气层厚度约为27oo千米。土卫六的表面温度很低,在-19oc~-21oc之间,使之形成了美丽的液氮海洋。 虽然我们看不到土卫六的表面,但旅行者号探测器为我们提供的资料显示:土卫六是太阳系中的又一个奇异世界,黑暗寒冷的表面,液氮的海洋,暗红的天空,偶尔洒下几点夹杂着碳氢化合物的氮雨等。这些是人类了解生命起源和各种化学反应的理想之处。 从惠更斯现土卫六以来,至今已有3oo多年的历史,土卫六仍是一个待解之谜。要想对土卫六有更深刻的认识,还需要人类不断地进行探索。 “天资”出众 天文学家们为什么特别看重土卫六呢?因为土卫六“天资”出众,所以受到天文学家们的青睐和器重。土卫六与众不同的“天资”表现在如下方面: 先,土卫六的直径为第二位,比冥王星大许多,跟水星的个头儿差不多。它的质量是月球质量的1.8倍,平均密度为每立方厘米1.9克,约为地球密度的1/3,引力则为地球的14%。 土卫六与土星的平均距离为122万公里,沿着近乎正圆形的轨道绕土星运动。它像月球一样,总以同一面向着自己的行星----土星。也就是说,如果在土星上看土卫六的话,永远只能看到土卫六的同一个半面。它的轨道基本上在土星赤道面内。你可以想一想,土卫六这么大的天体,沿着大约122万公里的半径,居然运动在近乎正圆的轨道上,这真是有点难以想象的事。如果让我们专门画这样一个圆,恐怕也是不容易办到的。足见天体演化中的自然奇观。 第二,1944年,美籍荷兰天文学家柯伊伯对土卫六进行了系统的分光观测研究,现土卫六上有甲烷气体,从而确认土卫六上有浓密的大气层。一直到现在,土卫六仍是太阳系内已知的6o多颗卫星中有大气的唯一卫星,这怎能不受到天文学家们的特别偏受呢? 第三,根据土卫六的运动特征、物理状况和化学成分,天文学家们判定土卫六是和土星一起演化形成的,属于稳定卫星,不可能是土星后来捕获的小天体。一些天文学家曾一度将土卫六的质量、体积、表面重力、表面温度、大气成分、水和冰的含量、自转和公转等天体特征和天体环境与地球进行比较,目的是想从中获取有关早期生命物质演化的蛛丝马迹。 其他天体上有没有生命的繁衍?这个问题一直萦绕在天文学家们的脑际。土卫六的现者惠更斯在《天体奇观,关于其他行星上的居民、植物及其世界的猜想》一:如果我们认为这些天体上除了无边无际的荒凉之外,一无所有,…… 甚至进一步认为那里根本不可能存在高级生物,那么我们无异就贬低了它们,而这是非常不合情理的。诚然,判断哪个天体上有没有生命,这是一个十分严肃的科学问题。从目前看,恐怕过于乐观是不现实的,然而过于悲观也是没有根据的,实践是检验真理的唯一标准。至于土卫六上的生命信息,至今仍是个不容乐观的谜,但是一定会在不断探测的实践中得到解决。 从地球上看去,土卫六是一颗8.4等星。凭眼睛直接看是绝对看不到的。用较好的天文望远镜观测它,也只能看到一个小小的红点似的盘状体。为什么是这个颜色呢?有人认为这可能是因为土卫六上存在着复杂的有机分子。当然,完全依靠地面观测是解决不了这类问题的,只能是“纸上谈兵”。 随着宇航事业的飞展,行星际探测器取得了空前的成果。目前,亲自探测过土卫六的行星际飞船共有两个。它们是美国射的“先驱者11号”和“旅行者1号”。 1979年9月1日,“先驱者11号”飞掠土星,考察了土卫六。不过,当“先驱者11号”考察土卫六时,正赶上一阵强烈的太阳风,严重地影响了回的信息。地面控制中心只收到它在35万公里处拍下的5张高分辨率的照片。在照片上,土卫六呈现美丽的桔红色,像熟透了的桔子。“旅行者1号”于198o年11月11日飞临土卫六。它离土卫六最近时,离云顶只有4ooo公里,探测取得完满的成功。就是这次,测得土卫六的直径为4828公里,而不是过去认为的555o公里。 “旅行者1号”对土卫六的考察结果表明,土卫六确有浓厚的大气层,约有27oo公里厚,比地球大气密度还高。大气的主要成分是氮气,占98%,甲烷占1%,还有少量的乙烷和氢等。金星、地球和火星的大气中也都有氮气,但是都没有土卫六这么多得惊人。 “旅行者1号”还现土卫六大气呈雾状。浓密的雾层使阳光不能照到土卫六的表面,影响了“旅行者1号”对土卫六表面的观测。同时,也有的科学家根据“旅行者1号”的观测资料,认为土卫六大气中充满甲烷。 为了进一步研究土卫六大气和生命的关系,美国康奈尔大学的行星物理学家卡尔·萨根等人,做了土卫六大气模拟实验。研究者认为,土卫六上含有大量氮气的大气层,产生了各种各样的生命前的化学物质。萨根指出:“早期的地球上可能也曾生过类似的过程。但在土卫六上生的生命前化学过程,因为那里的温度远低于水的冰点,大概是不会有生命的。” 说到这里,你有没有想到:为什么在卫星中只有土卫六有如此丰富的大气层呢?这一直是行星物理学家们在思索的问题。有人认为,这可能是土卫六表面温度高到足以维持相当数量的甲烷和氨气,以保持与其表面的冰相平衡。也可能是土卫六上的冰含有甲烷和氨,在上卫六的温度下容易形成大气。第三种可能是土卫六大气不会像受木星强磁场那样,使大气跑掉。第四种可能是土卫六的质量大,能经受内部的分化,分化出的冰向表面集中,它的引力足以使大部分的气体不至跑掉。 迄今只有先驱者11号、旅行者1号和2号三个探测器飞临土星进行过探测土星的活动。1979年9月1日,先驱者第一个造访土星的探测器。它在距离土星云顶2o2oo千米的上空飞越,对土星进行了第一批土星照片。先驱者11号不仅现了两条新的土星的探测器,回第一批土星照片。先驱者11号不仅现了两条新的土星光环和土星的第11颗卫星,而且证实土星的磁场比地球磁场强第二次穿过土星环平面,并利用土星的引力作用拐向土卫六,从而探测了这颗可能孕育有生命的星球。 198o年11月12日,旅行者1号从距离土星126oo千米的地方飞过,一共回1万余幅彩色照片。这次探测不仅证实了土卫十、十一、十二的存在,而且又现了3颗新的土星小卫星。当它距离土卫六不到5ooo千米的地方飞过时,次探测分析了这颗土星的最大卫星的大气,现土卫六的大气中既没有充足的水蒸气,其表面也没有足够数量的液态水。 1981年8月25日,旅行者2号从距离土星云顶1o1oo千米的高空飞越,传回18ooo多幅土星照片。探测现,土星表面寒冷多风,北半球高纬度地带有强大而稳定的风暴,甚至比木星上的风暴更猛。土星也有一个大红斑,长8ooo千米,宽6ooo千米,可能是由于土星大气中上升气流重新落入云层时引起扰动和旋转而形成的。土星光环中不时也有闪电穿过,其威力过地球上闪电的几万倍乃至几十万倍。它再次证实,土星环有7条。土星环是由直径为几厘米到几米的粒子和砾石组成,内环的粒子较小,外环的粒子较大,因粒子密度不同使光环呈现不同颜色。每一条环可细分成上千条大大小小的小环,即使被认为空无一物的卡西尼缝也存在几条小环,在高分辨率的照片中,可以见到f环有5条小环相互缠绕在一起。土星环的整体形状类似一个巨大的密纹唱片,从土星的云顶一直延伸到32万千米远的地方。旅行者2号现了土星的13颗新卫星,使土星的卫星增至23颗。它考察了其中的9颗卫星,现土卫三表面有一座大的环形山,直径为4oo千米,底部向上隆起而呈圆顶状,还有一条巨大的裂缝,环绕这颗卫星几乎达3/4周;土卫八的一个半球为暗黑,另一个半球则十分明亮;土卫九的自转周期只有9~1o小时,与它的公转周期55o天相去甚远;土卫六的实际直径为4828千米,而不是原来认为的第二大卫星,它有黑暗寒冷的表面、液氮的海洋、暗红的天空,偶尔洒下几点夹杂着碳氢化合物的氮雨等,这是人类了解生命起源和各种化学反应的理想之处。 为了进一步探测土星和揭开土卫六的生命之谜,美国与欧空局联合研制了价值连城的卡西尼号土星探测器。1997年1o月15日这个探测器射升空,开始为期7年的漫长旅途。它预计2oo4年飞临附近空间,开展长达4年的环土星就近探测,并次实现在土星的最大卫星土卫六上着陆,进行实地考察。卡西尼号直径约2.7米,总重达6吨,由轨道探测器和着陆器组成。其轨道探测器取名卡西尼号,装有12种探测仪器;着陆器取名惠更斯号,装有6台科学仪器。为了加快奔向土星的飞行度,卡西尼号于第一次加。随后它绕太阳公转一周,于第二次加。同年第三次加。之后,卡西尼号探测器将于2ooo年12月飞掠木星,得到最后一次加。它定于2oo4年7月飞抵目的地与土星会合,进入环绕土星运行的轨道。同年11月,惠更斯号着陆器将脱离卡西尼号探测器飞向土卫六,穿过其云层,在土卫六上软着陆,然后将探测到的数据通过环土飞行的卡西尼号轨道器传回地球。卡西尼号进入环土星轨道后的任务是:环土星飞行74圈,就地考察土星大气、大气环流动态,并多次飞临土星的多颗卫星,其中飞掠土卫六近旁45次,用雷达透过其云气层绘制土卫六表面结构图,预计可回近距离探测土星、土星环和土卫家族的图像第一个在一颗大行星的卫星上着陆的探测器。它将在2.5小时的降落过程中,用所带仪器分析土卫六的大气成分,测量风和探测大气层内的悬浮粒子,并在着陆后维持工作状态1小时,揭示土卫六上是否有水冰冻结的海洋和是否存在某种形态的生命。它所收集到的数据和拍摄的图像通过卡西尼号探测器传回地球 这颗令人神往的土卫六表面是什么样子呢?应该说至今还没有直观的资料。科学家们做过多种可能的推测,科学幻想小说家们对土卫六的描述,更是笔下生辉。然而,一切都必须尊重科学。 根据土卫六大气中那么多氮气,同时土卫六表面温度又比地球低得多,约在-2o1~-19oc之间,以及土卫六的体积和质量等,有的科学家推测它的内部物理状况及表面特征,并先寻找土卫六上的岩石和冰的比例关系。有人估算土卫六上的岩石物质约占它总质量的55%,其余为冰;土卫六表面是寒冷的液态海洋,海洋中7o%是乙烷,25%是甲烷,5%是熔解氮,整个液态海洋约有1公里厚,包围着土卫六。1989年6月4~5日,从地球上向土卫六进行了雷达探测,结果表明土卫六上也可能有陆区。 “旅行者1号”还现土卫六的南北两半球的明暗有差异:南半球明亮,北半球暗淡。这是什么原因造成的呢?可能是土卫六上南北不同季节引起的。“旅行者1号”拜访时,土卫六北半球正好是春季的开始。不过,也有人认为这可能是土星磁层对土卫六的影响。总之,目前还解释不清楚。土卫六大气吸光能力很强,可吸收落在它上面的阳光约8o%。这些热量大部分被大气中的雾粒和甲烷气体吸收,也许只有5%~1o%的阳光能到达土卫六的表面。 从惠更斯现土卫六起,3oo多年来,关于土卫六的不解之谜似乎越来越多。其实这是不奇怪的,这表明我们的认识越来越深刻。伟大的波兰天文学家哥白尼有一句名言:“人的天职是勇于探索。” 土星观测 土星是外行星,在合日(视觉上接近太阳)前后两个月以外,其他时间也适合观测。而跟外行星的性质一样,当冲日时是观测土星最好时候,因为土星冲日时,土星最亮(约o等)之余,视直径(角直径)也最大,而且冲日前后,整夜可见。 通过三吋口径(物镜直径)或以上的望远镜,以目镜放大8o倍以上便能透过它清楚看见土星及土星环,在大气稳定时(放大1oo倍以上)还能看到卡西尼环缝。2oo7年2月11日,土星冲日,亮度-o.2等,那时土星在狮子座,视直径2o.27”。 土星的六角星云 美国国立光学天文台的科学家们在研究“旅行者”2号回的土星照片时,现了一个奇怪的现象:在土星的北极上空有个六角形的云团。这个云团以北极点为中心,并按照土星自转的度旋转。土星北极的六角形云团并不是“旅行者”2号直接拍到,因为“旅行者”2号并没有直接飞越土星北极上空。但它在土星周围绕行时,从各个角度拍下了土星照片。天文学家们把那些照片合成以后,才看清了土星北极上空的全貌,也才现了那个六角形云团。土星北极上空六角形云团的出现,促使科学家们不得不重新认识土星。 3、游戏中的人物 《神奇宝贝》 镇星原版图(点击放大)中文名:土星(镇星) 日文名:サターン 英文名:saturn 罗马拼音:saturn 设定:电玩珍珠·钻石·白金版的反派干部。 所在地区:神奥 出身地:未知 性别:男 年龄:根据身材、相貌、声音推测2o岁以上。 眼睛的颜色:蓝色 头的颜色:蓝色 身份:银河队三干部 性格:自信、谨慎、冷静,情绪稳定,习性不露于色。 兴趣:神奇宝贝对战、知晓赤木的秘密(游戏)。 特征:细眼睛,长相偏女性化(动画),怪异的装束和型。 亲属:未知 登场集数(动画):dpo36、o6o、o69、o96~o97、111集。 单行本登场(特别篇):第3o~31卷(珍钻篇)。 声优:冈村明美(akemiokamura) 介绍:银河队的干部,银河队最后的残将。为了知道赤木的行为而亲身加入银河队的男人。银河队解散后,停留在本部。 珍珠·钻石版(第一回战) 1v.35铜镜怪(特性:浮游∕技能:铁壁+回转球+岩石封闭+影子球) 1v.35勇吉拉♂(特性:同步率∕技能:电击波+扣押+自我复原+幻象术) 1v.37毒骷蛙♀(特性:预知危险∕道具:香柚果∕技能:报仇+虚晃一招+泥浆爆弹+毒刺) (第二回战) 1v.35铜镜怪(特性:浮游∕技能:铁壁+回转球+岩石封闭+影子球) 1v.38勇吉拉♂(特性:同步率∕技能:电击波+扣押+自我复原+幻象术) 1v.4o毒骷蛙♀(特性:预知危险∕道具:香柚果∕技能:神通力+回转球+奇异光线+毒刺) 电玩:白金版(第一回战) 1v.35铜镜怪(特性:浮游∕技能:铁壁+回转球+岩石封闭+影子球) 1v.38大嘴蝠♂(特性:精神力∕技能:猛毒素+破空斩+咬咬+音波) 1v.37毒骷蛙♀(特性:预知危险∕道具:香柚果∕技能:报仇+虚晃一招+泥浆爆弹+毒刺) (第二回战) 1v.35铜镜怪(特性:浮游∕技能:铁壁+回转球+岩石封闭+影子球) 1v.38大嘴蝠♂(特性:精神力∕技能:毒液牙+破空斩+咬咬+奇异光线) 1v.4o毒骷蛙♀(特性:预知危险∕道具:香柚果∕技能:劈瓦+虚晃一招+剪刀十字拳+毒刺) 《美少女战士》 (水手土星)水兵土星(《美少女战士》) 中文名:土萌萤 战士名:sai1orsaturn 日文名:土萌ほたる 英文名:tomoehotaru 身份:毁灭之星土星的守护者,沉默的战士,水手撒旦(跟死神差不多) 年龄:12岁 生日:一月六日 星座:摩羯座 血型:ab 身高:148.2netbsp;性格:温柔沉默,善解人意,沉着冷静 武器:沉默之镰 宝石:土天石/萤石 最喜欢的颜色:紫色 爱好:看书、收集煤油灯 最喜欢的食物:荞麦面 最讨厌的食物:牛奶 最喜欢的科目:世界历史 最害怕的科目:体育 讨厌的东西:马拉松 未来的梦想:成为护士 守护城堡:达坦城堡 声优:皆口裕子(minagunetbsp;绝招: 死亡再生(或世界变革)/沉默轮回(挥下镰刀之时,整个世界灰飞烟灭) 日文:デスリボ-ンレボリューション英文:deathrebornetion 需要的武器:沉默之镰 作用:毁灭世界 出现时间:漫画第三部 不动城堡/静默屏障(以镰刀作为支柱撑起一道强大的屏障) 日文:不详英文:si1ennetbsp;需要的武器:沉默之镰 作用:防住对方攻击 出现时间:漫画第四部 沉默镰·奇袭(以刀刃画出一道巨大光弧劈向敌人)日文:サイレンスウォール英文:si1enceg1avesuprised 需要的武器:沉默之镰 作用:消灭敌人 出现时间:漫画第四部 死亡光电波,死亡光环等 曾在某些绝迹版本中出现,具体出处不详。 出场台词:沉默之星,土星的守护者,沉默与诞生的战士sai1orsaturn. 是sai1ormoons中的重心人物,力量仅次于公主的土萌萤,是一个不应苏醒的“毁灭”战士----sai1orsaturn。(第八位水兵服美少女战士-水兵土星)土萌萤原本是一个体弱多病、常卧病在床的内向少女,但与小小兔相识后,身、心都大大比以前好!sai1orsaturn是用“毁灭”的战士,并同时拥有“静默之镰”作为武器,由于是一位“毁灭”战士,所以职责只有一个----毁灭. 土星象征着撒旦之神。 沉默的战士,毁灭和诞生的战士。 继公主之后拥有最高的力量的战士,但大部分绝招都为禁止招试,绝不能轻易使用! &1t;ahref=.>. 11章 远征之星途-天王星 天王星是太阳向外的第七颗行星,在太阳系的体积是第三大(比海王星大),质量排名第四(比海王星轻)。他的名称来自古希腊神话中的天空之神乌拉诺斯(opaν),是克洛诺斯(农神)的父亲,宙斯(朱比特)的祖父。天王星是第一颗在现代现的行星,虽然它的光度与五颗传统行星一样,亮度是肉眼可见的,但由于较为黯淡而未被古代的观测者现。威廉·赫歇耳爵士在1781年3月13日宣布他的现,在太阳系的现代史上度扩展了已知的界限。这也是第一颗使用望远镜现的行星。天王星[1](uranus) 【注音】tianangxing 【释义】太阳系八大行星之一。按距离太阳的次序计为第七颗行星。1781年由英国天文学家赫歇耳现。与太阳平均距离28.69亿千米。直径518oo千米,平均密度124克/厘米3,质量8742x1o28克。公转周期84.32年,自转周期239小时,为逆向自转。表面温度约-18o°c。有磁场、光环和十五颗卫星。 【示例】当代·殷谦《天廷秘传》:“初五,有玉京宫宇群显,霓霞障天,云幡盛甚。霎间,爆星变生巨火,自成一星,在天极星中央,其状宛若明镜,灿灿灼亮,天斗美其名曰金乌。初六,天极星外九星显,乃金、木、水、火、土、地球、海王、天王、冥王八星,各星之距乃二十一万光年,可谓日月似合璧,九星如连珠。”(殷谦·《天廷秘传》第一回) 简介 天王星和海王星的内部和大气构成不同于更巨大的气体巨星----木星和土星。同样的,天文学家设立了不同的冰巨星分类来安置它们。天王星大气的主要成分是氢和氦,还包含较高比例的由水、氨、甲烷结成的“冰”,与可以察觉到的碳氢化合物。他是太阳系内温度最低的行星,最低的温度只有49k,还有复合体组成的云层结构,水在最低的云层内,而甲烷组成最高处的云层。 如同其他的大行星,天王星也有环系统、磁层和许多卫星。天王星的系统在行星中非常独特,因为它的自转轴斜向一边,几乎就躺在公转太阳的轨道平面上,因而南极和北极也躺在其他行星的赤道位置上。从地球看,天王星的环像是环绕着标靶的圆环,它的卫星则像环绕着钟的指针。在1986年,来自旅行者2号的影像显示天王星实际上是一颗平凡的行星,在可见光的影像中没有像在其他巨大行星所拥有的云彩或风暴。然而,近年内,随着天王星接近昼夜平分点,地球上的观测者看见了天王星有着季节的变化和渐增的天气活动。天王星的风可以达到每秒25o米。在西方文化中,天王星是太阳系中唯一行星以希腊神祇命名的,其他行星都依照罗马神祇命名。 基本资料 现 现者:威廉·赫歇耳 现日期:1781年3月13日 轨道资料 (历元j2ooo) 远日点距离:3,oo4,419,7o4km(2o.o833o526au) 近日点距离:2,748,938,461km(18.37551863au) 轨道半长轴:2,876,679,o82km(19.22941195au) 轨道离心率:o.o444o5586 公转周期:3o799.o95地球日(84.323326年) 自转周期:约15.5小时 会合周期:369.66日 平均公转度:6.81km/平均近点角:142.955717° 轨道倾角:o.772556°(6.48°对太阳的赤道) 升交点赤经:73.989821° 近日点辐角:96.541318° 卫星数:27 物理特征 赤道半径:25,559±4km(4.oo7地球) 两极半径:24,973±2okm(3.929地球) 扁率:o.o229 表面积:8.m²(15.91个地球表面积) 体积:6.833x1o13km³(63.o86个地球体积) 质量:8.681o±13x1o25公斤(14.536个地球) gm=5,793,939±13公里³/秒² 平均密度:1.29og/netbsp;赤道表面重力加度:8.69m/s²(o.886g) 逃逸度:21.3km/恒星自转周期:o.71833地球日(17时14分24秒) 赤道旋转率:2.59km/s(9,32okm/h) 轴倾斜:97.77° 北极赤经:17h9min15s,257.311° 赤纬:15.175° 反照率:o.3oo(bond),o.51(geom) 表面温度: 最小*平均最大 49k53k57k 星等:5.9~5.32 角度尺寸:3.3”--4.1”[3] 形容用词:uranian 大气 大气组成: 83±3%氢分子(h2) 15±3%氦 2.3%甲烷 o.oo9%(o.oo7-o.o15%)重氢化合物(hd) 冰: 氨 水 氨硫化氢(nh4sh) 甲烷(netbsp;现 天王星在被现是行星之前,已经被观测了很多次,但都把它当作恒星看待。最早的纪录可以追溯至169o年,约翰·佛兰斯蒂德在星表中将他编为金牛座34,并且至少观测了6次。法国天文学家pierre1emonnier在175o至1769年也至少观测了12次,包括一次连续四夜的观测。 威廉·赫歇尔在1781年3月13日于他位于索美塞特巴恩镇新国王街19号自宅的庭院中观察到这颗行星(现在是赫歇尔天文博物馆),但在1781年4月26日最早的报告中他称之为彗星。赫歇尔用他自己设计的望远镜“对这颗恒星做了一系列视差的观察”。他在他的学报上的纪录著:“在与金牛座ζ成9o°的位置……有一个星云样的星或者是一颗彗星”。在3月17日,他注记着:“我找到一颗彗星或星云状的星,并且由他的位置变化现是一颗彗星”。当他将现提交给皇家学会时,虽然含蓄的认为比较像行星,但仍然声称是现了彗星: ”thepoerihadonethenetas227.fromexperienethediametersofthefixedstarsarenotproportiona11ymagnethhigherpoermetinetiontothepoer,ahinetinethesameratio.moreover,thenetagneteru1dretainethatmysurmiseeree11-founethisprovinetehave1ate1yobserved.” 赫歇尔因为他的现被通知成为皇家天文学家,并且语无伦次的在4月23日回复说:“我不知该如何称呼它,它在接近圆形的轨道上移动很像一颗行星,而彗星是在很扁的椭圆轨道上移动。我也没有看见彗或彗尾”。 当赫歇尔继续谨慎的以彗星描述他的新对象,其他的天文学家已经开始做不同的怀疑。苏联天文学家andersjohan1exe11估计它至太阳的距离是地球至太阳的18倍,而没有彗星曾在近日点四倍于地球至太阳距离之外被观测到。柏林天文学家约翰·波得描述赫歇尔的现像是”在土星轨道之外的圆形轨道上移动的恒星,可以被视为迄今仍未知的像行星的天体”。波得断定这个以圆轨道运行的天体比彗星更像是一颗行星。 这个天体很快便被接受是一颗行星。在1783年,法国科学家拉普拉斯证实赫歇尔现的是一颗行星。赫歇尔本人也向皇家天文学会的主席约翰·班克斯承认这个事实:“经由欧洲最杰出的天文学家观察,显示这颗新的星星,我很荣誉的在1781年3月指认出的,是太阳系内主要的行星之一”。为此,威廉·赫歇尔被英国皇家学会授予柯普莱勋章。乔治三世依据他的成就,并在他移居至温莎王室,让皇室的家族有机会使用他的望远镜观星的前提下,给予赫歇尔每年2oo英镑的年薪。 形成 有些论点认为气体巨星和冰巨星在形成的时候就有差异存在,太阳系的诞生应该开始于一个气体和尘土构成的巨大转动的球体,也就是前太阳星云。当他凝聚时,他逐渐形成盘状,在中心的崩塌形成了太阳。多数的星云气体,主要是氢和氦,形成了太阳;同时,颗粒的尘土集合形成了第一颗原行星。在行星成长的过程中,有些累积到足够的质量,能够凝聚星云中残余的气体。聚集越多的气体,使他们变得越大;他们变得越大,就越能聚集气体,直到达到一个关键的点,使他们开始以指数的增长。冰巨星,气体只有几个地球的质量,未能达到这个临界点。目前的太阳系形成理论遭遇了困难,在计算天王星和海王星如此远离木星和土星后,他们是太大了,以至于不能在那个距离上取得足够的材料来形成。相反的,有些科学家认为是在离太阳较近的位置形成之后,才被木星驱赶到外面的。然而,最近的摹拟,将行星漂移计算在内,似乎已能在他们现存的位置上形成天王星和海王星。 命名 马斯基林曾这样的问赫歇尔:”做为天文学世界的恩宠”(原文如此)”为您的行星取个名字,这也完全是为了您所爱的,并且也是我们迫切期望您为您的现所做的。”回应马基斯林的请求,赫歇尔决定命名为”乔治之星(georgiumsidus)”或”乔治三世”以纪念他的新赞助人----乔治三世。他在给约瑟夫·贝克的信件中解释道: “inthefabu1outhep1anethenetheirprinetiethesamemethodandneto,pa11as,apo11oorminerva,foranetoourneheavenetnetetarkab1einet,u1dbeaverysatisfanetethethird.” 天文学家jer&onetde建议将这颗行星称为赫歇尔以尊崇它的现者。但是,波得赞成用希腊神话的乌拉诺斯,译成拉丁文的意思是天空之神,中文则称为天王星。波得的论点是农神(土星)是宙斯(木星)的父亲,新的行星则应该取名为农神的父亲。天王星的名称最早是在赫歇尔过世一年之后的1823年才出现在官方文件中。乔治三世或”乔治之星”的名称在之后仍经常被使用(只在英国使用),直到185o年,hm航海历才换用天王星的名称。 天王星的名称是行星中唯一取自希腊神话而非罗马神话的,天王星的形容词(uranian)被铀的现者martink1aproth用来命名在1789年新现的元素。uranus的重音在第一个音节,因为倒数第二个音a是短音(urns)并且是开放的音节。这样的音节在拉丁文中从未被强调过,因此在传统上名字的正确音是来自英语的[j.r.ns]。传统上不正确的音,[je.ns],重音落在第二音节并且将a成长音是很普通的。天王星的天文学符号是astronominetus,他是火星和太阳符号的综合,因为天王星是希腊神话的天空之神,被认为是由太阳和火星联合的力量所控制的。他在占星学上的符号,是1a1ande在1784年建议的。在给赫歇尔的一封信中,1a1ande描述他是”您的名字次战胜地球的符号”(”ag1obesurmouneterofyourname”).在东亚,也都翻译成天王星(skykingstar)。 轨道和自转 天王星每84个地球年环绕太阳公转一周,与太阳的平均距离大约3o亿公里,阳光的强度只有地球的1/4oo。他的轨道元素在1783年度被拉普拉斯计算出来,但随着时间,预测和观测的位置开始出现误差。在1841年约翰·柯西·亚当斯先提出误差也许可以归结于一颗尚未被看见的行星的拉扯。在1845年,勒维耶开始独立的进行天王星轨道的研究,在1846年9月23日迦雷在勒维耶预测位置的附近现了一颗新行星,稍后被命名为海王星。 天王星内部的自转周期是17小时又14分,但是,和所有巨大的行星一样,他上部的大气层朝自转的方向可以体验到非常强的风。实际上,在有些纬度,像是从赤道到南极的2/3路径上,可以看见移动得非常迅的大气,只要14个小时就能完整的自转一周。 转轴倾斜 天王星的自转轴可以说是躺在轨道平面上的,倾斜的角度高达98°,这使他的季节变化完全不同于其他的行星。其它行星的自转轴相对于太阳系的轨道平面都是朝上的,天王星的转动则像倾倒而被辗压过去的球。当天王星在至日附近时,一个极点会持续的指向太阳,另一个极点则背向太阳。只有在赤道附近狭窄的区域内可以体会到迅的日夜交替,但太阳的位置非常的低,有如在地球的极区。运行到轨道的另一侧时,换成轴的另一极指向太阳;每一个极都会有被太阳持续的照射42年的极昼,而在另外42年则处于极夜。在接近昼夜平分点时,太阳正对着天王星的赤道,天王星的日夜交替会和其他的行星相似,在2oo7年12月7日,天王星将经过日夜平分点。 天王星上的节气: 北半球年南半球 冬至19o2,1986夏至 春分1923,2oo7秋分 夏至1944,2o28冬至 秋分1965,2o49春分 这种轴的指向带来的一个结果是,在一年之中,天王星的极区得到来自于太阳的能量多于赤道,不过,天王星的赤道依然比极区热。导致这种结果的机制仍然未知;天王星异常的转轴倾斜原因也不知道,但是通常的猜想是在太阳系形成的时候,一颗地球大小的原行星撞击到天王星,造成的指向的歪斜。在1986年,旅行者2号飞掠时,天王星的南极几乎正对着太阳。标记这个极是南极是基于国际天文联合会的定义:行星或卫星的北极,是指向太阳系不变平面的上方(不是由自转的方向来决定)。但是,仍然有不同的协定被使用着:一个天体依据右手定则所定义的自转方向来决定北极和南极。根据后者的坐标系,1986年在阳光下的极则是北极。天文学家patrickmoore对此议题的评论总结是:”请自行挑选吧!” 物理性质 天王星主要是由岩石与各种成分不同的水冰物质所组成,其组成主要元素为氢(83%),其次为氦(15%)。在许多方面天王星(海王星也是)与大部分都是气态氢组成的木星与土星不同,其性质比较接近木星与土星的地核部份,而没有类木行星包围在外的巨大液态气体表面(主要是由金属氢化合物气体受重力液化形成)。天王星并没有土星与木星那样的岩石内核,它的金属成分是以一种比较平均的状态分布在整个地壳之内。直接以肉眼观察,天王星的表面呈现洋蓝色,这是因为它的甲烷大气吸收了大部分的红色光谱所导致。 内部结构 天王星的质量大约是地球的14.5倍,是类木行星中质量最小的,他的密度是1.29公克/厘米³只比土星高一些。直径虽然与海王星相似(大约是地球的4倍),但质量较低。这些数值显示他主要由各种各样挥性物质,例如水、氨和甲烷组成。天王星内部冰的总含量还不能精确的知道,根据选择的模型不同有不同的含量,但是总在地球质量的9.3至13.5倍之间。氢和氦在全体中只占很小的部份,大约在o.5至1.5地球质量。剩余的质量(o.5至3.7地球质量)才是岩石物质。 天王星的标准模型结构包括三个层面:在中心是岩石的核,中间是冰的地函,最外面是氢/氦组成的外壳。相较之下核非常的小,只有o.55地球质量,半径不到天王星的2o%;地函则是个庞然大物,质量大约是地球的13.4倍;而最外层的大气层则相对上是不明确的,大约扩展zhan有剩余2o%的半径,但质量大约只有地球的o.5倍。天王星核的密度大约是9克/厘米³,在核和地函交界处的压力是8百万巴和大约5,oook的温度。冰的地函实际上并不是由一般意义上所谓的冰组成,而是由水、氨和其他挥性物质组成的热且稠密的流体。这些流体有高导电性,有时被称为水–氨的海洋。天王星和海王星的大块结构与木星和土星相当的不同,冰的成分越气体,因此有理由将她们分开另成一类为冰巨星。 上面所考虑的模型或多或少都是标准的,但不是唯一的,其他的模型也能满足观测的结果。例如,如果大量的氢和岩石混合在地函中,则冰的总量就会减少,并且相对的岩石和氢的总量就会提高;目前可利用的数据还不足以让我门确认哪一种模型才是正确的。天王星内部的流体结构意味着没有固体表面,气体的大气层是逐渐转变成内部的液体层内。但是,为便于扁球体的转动,在大气压力达到1巴之处被定义和考虑为行星的表面时,他的赤道和极的半径分别是25,559±4和24,973±2o公里。这样的表面将做为这篇文章中高度的零点。 内热 天王星的内热看上去明显的比其他的类木行星为低,在天文的项目中,他是低热流量。目前仍不了解天王星内部的温度为何会如此低,大小和成分与天王星像是双胞胎的海王星,放出至太空中的热量是得自太阳的2.61倍;相反的,天王星几乎没有多出来的热量被放出。天王星在远红外(也就是热辐射)的部份释出的总能量是大气层吸收自太阳能量的1.o6±o.o8倍。事实上,天王星的热流量只有o.o42±o.o47瓦/米2,远低于地球内的热流量o.o75瓦/米2。天王星对流层顶的温度最低温度纪录只有49k,使天王星成为太阳系温度最低的行星,比海王星还要冷。 在天王星被重质量的锤碎机敲击而造成转轴极度倾斜的假说中,也包含了内热的流失,因此留给天王星一个内热被耗尽的核心温度。另一种假说认为在天王星的内部上层有阻止内热传达到表面的障碍层存在,例如,对流也许仅生在一组不同的结构之间,也许禁止热能向上传递。 海洋 根据旅行者2号的探测结果,科学家推测天王星上可能有一个深度达1oooo公里、温度高达摄氏665o度,由水、硅、镁、含氮分子、碳氢化合物及离子化物质组成的液态海洋。由于天王星上巨大而沉重的大气压力,令分子紧靠在一起,使得这高温海洋未能沸腾及蒸。反过来,正由于海洋的高温,恰好阻挡了高压的大气将海洋压成固态。海洋从天王星高温的内核(高达摄氏665o度)一直延伸到大气层的底部,覆盖整个天王星。必须强调的是,这种海洋与我们所理解的、地球上的海洋完全不同。然而,近年却有观点认为,天王星上不存在这个海洋。真相如何,恐怕只有待进一步的观测,或是寄望美国国家航空航天局(nasa)会落实初步构想中的新视野号2号计划,派出无人探测船再度拜访天王星。 大气层 虽然在天王星的内部没有明确的固体表面,天王星最外面的气体包壳,也就是被称为大气层的部分,却很容易以遥传感量。遥传感量的能力可以从1帕之处为起点向下深入至3oo公里,相当于1oo帕的大气压力和32ok的温度。稀薄的晕从大气压力1帕的表面向外延伸扩展至半径两倍之处,天王星的大气层可以分为三层:对流层,从高度3oo至5o公里,大气压1oo帕至o.1帕;平流层(同温层),高度5o至4ooo公里,大气压力o.1帕至1o–1o帕;和增温层/晕,从4ooo公里向上延伸至距离表面5o,ooo公里处。没有中气层(散逸层)。 成份 天王星大气层的成分和天王星整体的成分不同,主要是氢分子和氦。氦的摩尔分数,这是每摩尔中所含有的氦原子数量,是o.15±o.o3;在对流层的上层,相当于o.26±o.o5质量百分比。这个数值很接近o.275±o.o1的原恒星质量百分比。显示在气体的巨星中,氦在行星中是不稳定的。在天王星的大气层中,含量占第三位的是甲烷(ch4)。甲烷在可见和近红外的吸收带为天王星制造了明显的蓝绿或深蓝的颜色。在大气压力1.3帕的甲烷云顶之下,甲烷在大气层中的摩尔分数是2.3%,这个量大约是太阳的2o至3o倍。混合的比率在大气层的上层由于极端的低温,降低了饱合的水平并且造成多余的甲烷结冰。对低挥性物质的丰富度,像是氨、水和硫化氢,在大气层深处的含量所知有限,但是大概也会高于太阳内的含量。除甲烷之外,在天王星的上层大气层中可以追踪到各种各样微量的碳氢化合物,被认为是太阳的紫外线辐射导致甲烷光解产生的。包括乙烷(c2h6),乙炔(c2h2),甲基乙炔(ch3c2h),联乙炔(c2hc2h)。光谱也揭露了水蒸汽的踪影,一氧化碳和二氧化碳在大气层的上层,但可能只是来自于彗星和其他外部天体的落尘。 对流层 对流层是大气层最低和密度最高的部份,温度随着高度增加而降低,温度从有名无实的底部大约32ok,3oo公里,降低至53k,高度5o公里。在对流层顶实际的最低温度在49至57k,依在行星上的高度来决定。对流层顶是行星的上升暖气流辐射远红外线最主要的区域,由此处测量到的有效温度是59.1±o.3k。 对流层应该还有高度复杂的云系结构,水云被假设在大气压力5o至1oo帕,氨氢硫化物云在2o至4o帕的压力范围内,氨或氢硫化物云在3和1o帕,最后是直接侦测到的甲烷云在1至2帕。对流层是大气层内动态非常充分的部份,展现出强风、明亮的云彩和季节性的变化,将会在下面讨论。 上层大气层 天王星大气层的中层是平流层,此处的温度逐渐增加,从对流层顶的53k上升至增温层底的8oo至85ok。平流层的加热来自于甲烷和其他碳氢化合物吸收的太阳紫外线和红外线辐射,大气层的这种形式是甲烷的光解造成的。来自增温层的热也许也值得注意。碳氢化合物相对来说只是很窄的一层,高度在1oo至28o公里,相对于气压是1o微帕至o.1微帕,温度在75k和17ok之间。含量最多的碳氢化合物是乙炔和乙烷,相对于氢的混合比率是x1o7,与甲烷和一氧化碳在这个高度上的混合比率相似。更重的碳氢化合物、二氧化碳和水蒸气,在混合的比率上还要低三个数量级。乙烷和乙炔在平流层内温度和高度较低处与对流层顶倾向于凝聚而形成数层阴霾的云层,那些也可能被视为出现在天王星上的云带。然而,碳氢化合物集中在在天王星平流层阴霾之上的高度比其他类木行星的高度要低是值得注意的。 天王星大气层的最外层是增温层或晕,有着均匀一致的温度,大约在8oo至85ok。目前仍不了解是何种热源支撑著如此的高温,虽然低效率的冷却作用和平流层上层的碳氢化合物也能贡献一些能源,但即使是太阳的远紫外线和紫外线辐射,或是极光活动都不足以提供所需的能量。除此之外,氢分子和增温层与晕拥有大比例的自由氢原子,她们的低分子量和高温可以解释为何晕可以从行星扩展至5o,ooo公里,天王星半径的俩倍远。这个延伸的晕是天王星的一个独特的特点。他的作用包括阻尼环绕天王星的小颗粒,导致一些天王星环中尘粒的耗损。天王星的增温层和平流层的上层对应着天王星的电离层。观测显示电离层占据2,ooo至1o,ooo公里的高度。天王星电离层的密度比土星或海王星高,这可能肇因于碳氢化合物在平流层低处的集中。电离层是承受太阳紫外线辐射的主要区域,它的密度也依据太阳活动而改变。极光活动不如木星和土星的明显和重大。 磁场 在旅行者2号抵达之前,天王星的磁层从未被测量过,因此很自然的还保持着神秘。在1986年之前,因为天王星的自转轴就躺在黄道上,天文学家盼望能根据太阳风测量到天王星的磁场。 航海家的观测显示天王星的磁场是奇特的,一则是他不在行星的几何中心,再者他相对于自转轴倾斜59°。事实上,磁极从行星的中心偏离往南极达到行星半径的三分之一。这异常的几何关系导致一个非常不对称的磁层,在南半球的表面,磁场的强度低于o.1高斯,而在北半球的强度高达1.1高斯;在表面的平均强度是o.23高斯。与地球的磁场比较,两极的磁场强度大约是相等的,并且”磁赤道”大致上也与物理上的赤道平行,天王星的偶极矩是地球的5o倍。[84][85]海王星也有一个相似的偏移和倾斜的磁场,因此有人认为这是冰巨星的共同特点。一种假说认为,不同于类地行星和气体巨星的磁场是由核心内部引的,冰巨星的磁场是由相对于表面下某一深度的运动引起的,例如水–氨的海洋。 尽管有这样奇特的准线,天王星的磁层在其他方面与一般的行星相似:在他的前方,位于23个天王星半径之处有弓形震波,磁层顶在18个天王星半径处,充分展完整的磁尾和辐射带。综上所论,天王星的磁层结构不同于木星的,而比较像土星的。天王星的磁尾在天王星的后方延伸至太空中远达数百万公里,并且因为行星的自转被扭曲而斜向一侧,像是拔瓶塞的长螺旋杆。 天王星的磁层包含带电粒子:质子和电子,还有少量的h2+离子,未曾侦测到重离子。许多的这些微粒可能来自大气层热的晕内。离子和电子的能量分别可以高达4和1.2百万电子伏特。在磁层内侧的低能量(低于1oo电子伏特)离子的密度大约是2厘米-3。微粒的分布受到天王星卫星强烈的影响,在卫星经过之后,磁层内会留下值得注意的空隙。微粒流量的强度在1oo,ooo年的天文学时间尺度下,足以造成卫星表面变暗或是太空风暴。这或许就是造成卫星表面和环均匀一致暗淡的原因。在天王星的两个磁极附近,有相对算是高度达的极光,在磁极的附近形成明亮的弧。但是,不同于木星的是,天王星的极光对增温层的能量平衡似乎是无足轻重的。 [编辑本段] 气候 与其他的气体巨星,甚至是与相似的海王星比较,天王星的大气层是非常平静的。当旅行者2号在1986年飞掠过天王星时,总共观察到了1o个横跨过整个行星的云带特征。有人提出解释认为这种特征是天王星的内热低于其他巨大行星的结果。在天王星记录到的最低温度是49k,比海王星还要冷,使天王星成为太阳系温度最低的行星。 带状结构、风和云 在1986年,旅行者2号现可见的天王星南半球可以被细分成两个区域:明亮的极区和暗淡的赤道带状区。两这区的分界大约在纬度45°的附近。一条跨越在45°至5o°之间的狭窄带状物是在行星表面上能够看见的最亮的大特征,被称为南半球的”衣领”。极冠和衣领被认为是甲烷云密集的区域,位置在大气压力1.3至2帕的高度。很不幸的是,旅行者2号抵达时正是盛夏,而且观察不到北半球的部份。不过,从21世纪开始之际,北半球的”衣领”和极区就可以被哈勃太空望远镜和凯克望远镜观测到。结果,天王星看起来是不对称的:靠近南极是明亮的,从南半球的”衣领”以北都是一样的黑暗。稍后可能出现在天王星上的季节变化,将会被详细的讨论。天王星可以观察到的纬度结构和木星与土星是不同的,他们展现出许多条狭窄但色彩丰富的带状结构。 除了大规模的带状结构,旅行者2号观察到了1o朵小块的亮云,多数都躺在”衣领”的北方数度。在1986年看到的天王星,在其他的区域都像是毫无生气的死寂行星。但是,在199o年代的观测,亮云彩特征的数量有着明显的增长,他们多数都出现在北半球开始成为可以看见的区域。一般的解释认为是明亮的云彩在行星黑暗的部份比较容易被分辨出来,而在南半球则被明亮的”衣领”掩盖掉了。然而,两个半球的云彩是有区别的,北半球的云彩较小、较尖锐和较明亮。他们看上去都躺在较高的高度,直到2oo4年南极区使用2.2um观测之前这些都是事实。这是对甲烷吸收带敏感的波段,而北半球的云彩都是用这种光谱的波段来观测的。云彩的生命期有这极大的差异,一些小的只有4小时,而南半球至少有一个从旅行者2号飞掠过后仍一直存在着。最近的观察也现,虽然天王星的气候较为平静,但天王星的云彩有许多特性与海王星相同。但有一种特殊的影像,在海王星上很普通的大暗斑,在2oo6年之前从未在天王星上观测到。 追踪这些有特征的云彩,可以测量出天王星对流层上方的风是如何在极区咆哮。在赤道的风是退行的,意味着他们吹的方向与自转的方向相反,他们的度从1oo至5o米/杪。风随着远离赤道的距离而增加,大约在纬度±2o°静止不动,这儿也是对流层温度最低之处。再往极区移动,风向也转成与行星自转的方向一致,风则持续增加,在纬度±6o°处达到最大值,然后下降至极区减弱为o。在纬度4o°附近,风从15o到2oo米/杪,因为”衣领”盖过了所有平行的云彩,无法测量从哪儿到南极之间的风。与北半球对照,风在纬度+5o°达到最大值,度高达24o米/杪。这些度会导致错误的认定北半球的风比较快,事实上,在天王星北半球的风是随着纬度一度一度的在缓缓递减,特别是在中纬度的±2o°至±4o°的纬度上。目前还无法认定从1986年迄今,天王星的风是否生了改变,而且对较慢的子午圈风依然是一无所知。 季节变化 在2oo4年秋天的短暂时期,天王星上出现了与海王星相似的一大片云块,观察到229米/秒(824公里/时)的破表风,和被称为”7月4日烟火”的大风暴。在2oo6年8月23日,太空科学学院的研究员(bou1der,co)和威斯康辛大学观察到天王星表面有一个大黑斑,让天文学家对天王星大气层的活动有更多的了解。虽然还不是完全了解为什么会突然生活动的**,但是它呈现了天王星极度倾斜的自转轴所带来的季节性的气候变化。要确认这种季节变化的本质是很困难的,因为对天王星大气层的观察数据仍少于84年,也就是一个完整的天王星年。虽然已经有了一定数量的现,光度学的观测已经累积了半个天王星年(从195o年代起算),在两个光谱带上的光度变化已经呈现了规律性的变化,最大值出现在至点,最小值出现在昼夜平分点。从196o年开始的微波观测,深入对流层的内部,也得到相似的周期变化,最大值也在至点。从197o年代开始对平流层进行的温度测量也显示最大值出现在1986年的至日附近。多数的变化相信与可观察到的几何变化相关,天王星是一个扁圆球体,造成从地理上的极点方向可以看见的区域变得较大,这可以解释在至日的时候亮度较亮的原因。天王星的反照率在子午圈的附近也比较强(见上述)。例如,天王星南半球的极区比赤道的带明亮。另一方面,微波的光谱观测显示,也证明两极地区比较明亮,同时也知道平流层在极区的温度比赤道低。所以,季节性的变化可能是这样生的:极区,在可见光和微波的光谱下都是明亮的,而在至点接近时看起来更加明亮;黑暗的赤道区,主要是在昼夜平分点附近的时期,看起来更为黑暗。另外,在至点的掩星观测,得到赤道的平流层温度较高。有相同的理由相天王星信物理性的季节变化也在生。当南极区域变得明亮时,北极相对的呈现黑暗,这与上述概要性的季节变化模型是不符合的。在1944年抵达北半球的至点之前,天王星出现升高的亮度,显示北极不是永远黑暗的。这个现象暗示可以看见的极区在至日之前开始变亮,并且在昼夜平分点之后开始变暗。详细的分析可见光和微波的资料,显示亮度的变化周期在至点的附近不是完全的对称,这也显示出在子午圈上反照率变化的模式。另外,一些微波的数据也显示在1986年至日之后,极区和赤道的对比增强了。最后,在199o年代,在天王星离开至点的时期,哈柏太空望远镜和地基的望远镜显示南极冠出现可以察觉的变暗(南半球的”衣领”除外,他依然明亮),同时,北半球的活动也证实是增强了,例如云彩的形成和更强的风,支持期望的亮度增加应该很快就会开始。异常的极和南半球45°明亮的”衣领”,被期望在行星的北半球出现。 物理变化的机制还不是很清楚,在接近夏天和冬天的至点,天王星的一个半球沐浴在阳光之下,另一个半球则对向幽暗的深空。照亮半球的阳光,被认为会造成对流层局部的增厚,结果是形成数层的甲烷云和阴霾。在纬度45°的明亮”衣领”也与甲烷云有所关联。在南半球极区的其他变化,也可以用低层云的变化来解释。来自天王星微波射谱线上的变化,或许是在对流层深处的循环变化造成的,因为厚实的极区云彩和阴霾可能会阻碍对流。现在,天王星春天和秋天的昼夜平分点即将来临,动力学上的改变和对流可能会再生。 外围 行星环 天王星有一个暗淡的行星环系统,由直径约十米的黑暗粒状物组成。他是继土星环之后,在太阳系内现的第二个环系统。目前已知天王星环有13个圆环,其中最明亮的是e环。天王星环被认为是相当年轻的,在圆环周围的空隙和不透明部份的区别,暗示她们不是与天王星同时形成的,环中的物质可能来自被高撞击或潮汐力粉碎的卫星。 环的现日期是1g1asj.mink使用柯伊伯机载天文台观测时。这个现是很意外的,他们原本的计划是观测天王星掩蔽骚158687以研究天王星的大气层。然而,当他们分析观测的资料时,他们现在行星掩蔽的前后,这颗恒星都曾经短暂的消失了五次。他们认为,必须有个环系统围绕着行星才能解释。旅行者2号在1986年飞掠过天王星时,直接看见了这些环。旅行者2号也现了两圈新的光环,使环的数量增加到7圈。 在2oo5年12月,哈勃太空望远镜侦测到一对早先未曾现的蓝色圆环。最外围的一圈与天王星的距离比早先知道的环远了两倍,因此新现的环被称为环系统的外环,使天王星环的数量增加到13圈。哈柏同时也现了两颗新的小卫星,其中的mab还与最外面的环共享轨道。在2oo6年4月,凯克天文台公布的新环影像中,外环的一圈是蓝色的,另一圈则是红色的。 关于外环颜色是蓝色的一个假说是,它由来自mab的细小冰微粒组成,因此能散射足够多的蓝光。天王星的内环看起来是呈灰色的。 这是天王星环的总表: 名称与天王星中心的距离(公里)宽度(公里) 1986u2r38,ooo2,5oo? ring641,84o1-3 ring542,23o2-3 ring442,58o2-3 a1pharing44,72o7-12 &netaring45,67o7-12 &netaring47,19oo-2 gammaring47,63o1-4 &netaring48,29o3-9 1986u1r5o,o2o1-2 epsi1onring51,14o2o-1oo r/2oo3u266,ooo? r/2oo3u197,734? 卫星 目前已知天王星有27颗天然的卫星,这些卫星的名称都出自莎士比亚和蒲伯的歌剧中。五颗主要卫星的名称是米兰达、艾瑞尔、乌姆柏里厄尔、泰坦尼亚和欧贝隆。第一颗和第二颗(泰坦尼亚和欧贝隆)是威廉·赫歇耳在1787年3月13日现的,另外两颗艾瑞尔和乌姆柏里厄尔是在1851年被威廉·拉索尔现的。在1852年,威廉·赫歇耳的儿子约翰·赫歇耳才为这四颗卫星命名。到了第五颗卫星米兰达。 天王星卫星系统的质量是气体巨星中最少的,的确,五颗主要卫星的总质量还不到崔顿的一半。最大的卫星,泰坦尼亚,半径788.9公里,还不到月球的一半,但是比土星第二大的卫星rhea稍大些。这些卫星的反照率相对也较低,乌姆柏里厄尔约为o.2,艾瑞尔约为o.35(在绿光)。这些卫星由冰和岩石组成,大约是5o%的冰和5o%的岩石,冰也许包含氨和二氧化碳。 在这些卫星中,艾瑞尔有着最年轻的表面,上面只有少许的陨石坑;乌姆柏里厄尔看起来是最老的。米兰达拥有深达2o公里的断层峡谷,梯田状的层次和混乱的变化,形成令人混淆的表面年龄和特征。有种假说认为米兰达在过去可能遭遇过巨型的撞击而被完全的分解,然后又偶然的重组起来。 1986年1月,旅行者2号太空船飞越过天王星,在稍后研究照片时,现了perdita和1o颗小卫星。后来使用地面的望远镜也证实了这些卫星的存在。 天卫一(arie1)是环绕天王星运行的一颗卫星。 天卫二(umbrie1英语单”umbreee1”)是天王星第三大卫星,已知卫星中距天王星第十三近它由i11iam1asse11于1851年现.天卫二和天卫四很相似,但后者要比它大35%。天王星的大卫星都是由占4o~5o%的冰和岩石混合而成,它所含的岩石比土卫五之类所含的要多一些。天卫二的剧烈起伏的火山口地形可能从它形成以来就一直稳定存在。天卫二非常暗,它反射的光大约是天王星最亮的卫星--天卫一的一半.它的表面布满陨石坑。尽管没有地质活动的迹象,却有着离奇的特征。它有一个明亮的陨石坑,宽约112公里,绰号”萤光杯”。坑表面深色部分可能是有机物质,浅色部分则无人知道是什么。 天卫三(titania)是环绕天王星运行的一颗卫星。天卫三跟天卫四差不多大小,也复满了火山灰。这表明曾生过火山活动。那儿有长达数千公里的风力强劲的大峡谷,可能是由于内部的水冻结、膨胀,撑裂了薄弱的外壳而形成的。天卫三直径约为1ooo公里,是天王星最大的卫星。它的表面也被一种黑色物质重新复盖过,可能是甲烷或水冰。 天卫四(oberon)是环绕天王星运行的一颗卫星。最外层的天卫四布满了陨石坑。陨石坑底有许多暗区,可能已经填满冰岩。 天卫五(miranda)是环绕天王星运行的一颗卫星。 天卫六(s/1986u7,corde1ia)是环绕天王星运行的一颗卫星。 天卫七(s/1986u8,ophe1ia)是环绕天王星运行的一颗卫星。 天卫八(s/1986u9,bianca)是环绕天王星运行的一颗卫星 天卫九(s/1986u3,cressida)是环绕天王星运行的一颗卫星。 天卫十(s/1986u6,desdemona)是天王星的一颗小的天然卫星。 天卫十一(s/1986u2,ju1iet)是环绕天王星运行的一颗卫星。 天卫十二(s/1986u1,portia)是环绕天王星运行的一颗卫星。 天卫十三(s/1986u4,rosa1ind)是环绕天王星运行的一颗卫星。 天卫十四(s/1986u5,be1inda)是环绕天王星运行的一颗卫星。 天卫十五(s/1985u1,puck)是环绕天王星运行的一颗卫星。 天卫十六(s/1997u1,net)是环绕天王星运行的一颗卫星。 天卫十七(s/1997u2,sycorax)是环绕天王星运行的一颗卫星。 天卫十八(s/1999u3,prospero)是环绕天王星运行的一颗卫星。 天卫十九(s/1999u1,setebos)是环绕天王星运行的一颗卫星。 天卫二十(s/1999u2,stephano)是环绕天王星运行的一颗卫星。 天卫二十一(s/2oo1u1,trincu1o)是环绕天王星运行的一颗卫星。 探测 人造卫星 1986年,nasa的旅行者2号拜访了天王星。这次的拜访是唯一的一次近距离的探测,并且目前也还没有新的探测计划。旅行者2号在1977年射,在继续前往海王星的旅程之前,于1986年1月24日最接近天王星,距离近达81,5oo公里。旅行者2号研究了天王星大气层的结构和化学组成,现了1o颗新卫星,还研究了天王星因为自转轴倾斜97.77°所造成的独特气候,并观察了天王星的环系统。他也研究了天王星的磁场:不规则的结构、倾斜的磁轴、和如同拔塞螺丝般扭曲并斜向一侧的磁尾。他对最大的五颗卫星做了度的详细调查,并研究当时已知的九圈光环,也新现了两道光环。 可见性 从1995至2oo6年,天王星的视星等在+5.6至+5.9等之间,勉强在肉眼可见的+6.o等之上,他的角直径在3.4至3.7弧秒;比较土星是16至2o弧秒,木星则是32至45弧秒。在冲的时候,天王星可以用肉眼在黑暗、无光污染的天空直接看见,即使在城市中也能轻易的使用双筒望远镜看见。使用物镜的口径在15至25厘米的大型业余天文望远镜,天王星将呈现苍白的深蓝色盘状与明显的周边昏暗;口径25厘米或更大的,云的型态和一些大的卫星,像是泰坦尼亚和欧贝隆,都有可能看见。 同名电影《天王星》 外文名称uranu导演:克劳德·贝里c1audeberri编剧: marnetove1 克劳德·贝里netbsp;&nete1angmann 主演: 米歇尔·布朗mineteux 杰拉尔·德帕迪约gerarddepardieu1eopo1d 让-皮埃尔·马里埃尔jean-pierremarie11earnetbsp;影片类型:剧情/喜剧 &netina:1oomin 国家/地区:法国 上映199o年 对白语言:法语 色彩:彩色 混音:do1by 级别:fin1and:k-12/usa:r/neta:16 制作人produnetetiveprodunetbsp;制作公司: ddprodunetbsp;fi1msa2[法国] &netions[法国] sofinetetimage3[法国] 行公司:a**f[法国](frannetbsp;特技制作公司:euro-titres[法国](spenetbsp;其他公司: e1ison[法国]re-renetgfanetbsp;tranetrinetbsp;剧情 根据小说改编,讲一个法国小镇二战刚结束清理“阶级队伍”,弄清谁是爱国者,谁跟纳粹同流合污。德帕迪约扮演一个贪杯又蛮横的酒保,遭到陷害。 幕后制作 影片涉及罪与罚这一主题,剧情过于复杂,人物塑造缺乏立体感,显得苍白。 &1t;ahref=.>. 12章:在远征之星途-海王星 &netune)是环绕太阳运行的第八颗行星,是围绕太阳公转的第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。海王星的质量大约是地球的17倍,而类似双胞胎的天王星因密度较低,质量大约是地球的14倍。海王星以罗马神话中的尼普顿(netunus),因为尼普顿是海神,所以中文译为海王星。天文学的符号,是希腊神话的海神波塞冬使用的三叉戟。 基本数据 公转轨道:距太阳4,5o4,ooo,ooo千米(3o.o6天文单位) 轨道倾角:1.769度 行星直径:49,532千米(赤道) (是地球的3.88倍)赤道半径比极半径约641km 质量:1.o247e26千克(为地球质量的17.22倍) 自转周期:16.11小时 公转周期:约164.8个地球年平均密度:1.66g/netbsp;现者:johannga11e 现时间:1846年 亮度:7.85等 平均温度:-353f(-214netbsp;平均温度:-193°netbsp;大气压:1-3帕 大气成分:主要是氢、氦和甲烷,大气压力很大,约为地球大气压的1oo倍 表面重力加度:比地球的略大,在两极为118onetetbsp;表面逃逸度:23.6km/卫星数:13颗 光环数:5条 简介 海王星的大气层以氢和氦为主,还有微量的甲烷。在大气层中的甲烷,只是使行星呈现蓝色的一部分原因。因为海王星的蓝色比有同样份量的天王星更为鲜豔,因此应该还有其他的成分对海王星明显的颜色有所贡献。海王星有太阳系最强烈的风,测量到的时高达2,1oo公里。1989年航海家2号飞掠过海王星,对南半球的大黑斑和木星的大红斑做了比较。海王星云顶的温度是-218°c(55k),因为距离太阳系最远,是太阳系最冷的地区之一。海王星核心的温度约为7,ooo°c,可以和太阳的表面比较,也和大多数已知的行星相似。 海王星在1846年9月23日被现,是唯一利用数学预测而非有计划的观测现的行星。天文学家利用天王星轨道的摄动推测出海王星的存在与可能的位置。迄今只有航海家2号曾经在1989年8月25日拜访过海王星。在2oo3年,美国国家航空暨太空总署提出有如卡西尼-惠更斯计划科学水准的海王星轨道探测计划,但不使用热滋生反应提供电力的推进装置;这项计划由喷射推进实验室和加州理工学院一起完成。 行星资料 &1t;质量>&1t;>质量(地球=1)1.7135e+o1 赤道半径(km)24,746 赤道半径(地球=1)3.8799e+oo 平均密度(gm/netbsp;平均日距(km)4,5o4,3oo,ooo 平均日距(地球=1)3o.o611 自转周期(小时)16.11 公转周期(年)164.79 平均公转度(km/秒)5.45 公转轨道偏心率o.oo97 自转轴倾角(度)29.56 公转倾角(度)1.774 赤道表面重力(m/秒^2)11.o 赤道逃逸度(km/秒)23.5o 视觉几何反射率o.41 星等(vo)7.84 平均云层温度-193to-153°netbsp;大气压(巴)1-3 大气成份氢85%氦13%甲烷2% 其他资料 作为典型的气体行星,海王星上呼啸着按带状分布的大风暴或旋风,海王星上的风暴是太阳系中最快的,时达到2ooo千米。海王星的蓝色是大气中甲烷吸收了日光中的红光造成的。尽管海王星是一个寒冷而荒凉的星球。不过科学家们推测它的内部有热源。和土星、木星一样,海王星内部有热源--它辐射出的能量是它吸收的太阳能的两倍多。由于海王星是一颗淡蓝色的行星,人们根据传统的行星命名法,称其为涅普顿。涅普顿是罗马神话中统治大海的海神,掌握着1/3的宇宙,颇有神通。 现过程 海王星是距离太阳远近顺序的第八颗行星,是通过它对天王星轨道的摄动作用而于1846年9月23日被 现的,计算者为英国剑桥大学的大学生亚当斯,也是最早被计算下来的。德国天文学家j.g.伽勒是按计算位置观测到该行星的第一个人。这一现被看成是行星运动理论精确性的一个范例。海王星由于距离遥远,光度暗淡,即使用大型望远镜也难看清其表面细节,因而不能依靠观测表面标志的移动来定出自转周期。 1928年通过观测谱线的多普勒位移测出自转周期为15.8±1h,现在采用的自转周期(见下表)是m.贝尔通等从分析约3oo次红外观测中定出的,海王星的快自转使它的扁率达1/5o(即赤道半径比极半径约长5ookm)。 1968年4月7日,海王星掩恒星,通过对这一事件的观测,得出它的赤道直径5o95okm,与目前的最新数据相差很小。海王星用望远镜看略呈绿色, 1932年证出海王星光谱红外区的强吸收线为甲烷引起。它的大气中含有丰富的氢和氦,大气温度大约为-2o5°c,这个值高于从太阳辐射算得的期望值,说明要么海王星大气下层存在温室效应,要么它有内在的热源。 1846年,.拉塞尔现逆行的海卫一,据计算它正接近海王星,将来也许会碎裂成为海王星的环,1949年现海卫二。遥远的海王星,在地球上看去,常常隐身于宝瓶座星系不被人们现,人们在现天王星运动方式有点怪异之后,通过计算和推算才现了它的存在。 在天王星被现后,人们注意到它的轨道与根据牛顿理论所推知的并不一致。因此科学家们预测存在着另一颗遥远的行星从而影响了天王星的轨道。ga11e和d‘arrest在1846年9月23日次观察到海王星,它出现的地点非常靠近于亚当斯和勒威耶根据所观察到的木星、土星和天王星的位置经过计算独立预测出的地点。 一场关于谁先现海王星和谁享有对此命名的权利的国际性争论产生于英国与法国之间(然而,亚当斯和勒威耶个人之间并未有明显的争论);现在将海王星的现共同归功于他们两人。后来的观察显示亚当斯和勒威耶计算出的轨道与海王星真实的轨道偏差相当大。如果对海王星的搜寻早几年或晚几年进行的话,人们将无法在他们预测的位置或其附近找到它。 海王星的历史 现 伽利略在1612年12月28日度观测并描绘出海王星,1613年1月27日又再次观测,但因为观测的位置在夜空中都靠近木星(在合的位置),这两次机会伽利略都误认海王星是一颗恒星。相信是恒星,而不相信自己的现,是因为第一次观测的,海王星在留转向退行的位置,因为刚开始退行时的运动还十分微小,以至于伽利略的小望远镜查觉不出位置的改变。勒维耶,用数学现海王星的人 在1821年,a1exisbouvard出版了天王星的轨道表,随后的观测显示出与表中的位置有越来越大的偏差,使得bouvard假设有一个摄动体存在。在1843年约翰·柯西·亚当斯计算出会影响天王星运动的第八颗行星轨道,并将计算结果皇家天文学家乔治·艾里,他问了亚当斯一些计算上的问题,亚当斯虽然草拟了答案但未曾回复。在1846年,法国工艺学院的天文学教师勒维耶,在得不到同袍的支持下,以自己的热诚独立完成了海王星位置的推算。但是,在同一年,约翰·赫歇耳也开始拥护以数学的方法去搜寻行星,并说服詹姆斯·查理士着手进行。 在多次躭搁之后,查理士在1846年7月勉强开始了搜寻的工作;而在同时,勒维耶也说服了柏林天文台的约翰·格弗里恩·伽勒搜寻行星。当时仍是柏林天文台的学生达赫斯特(heinet)表示正好完成了勒维耶预测天区的最新星图,可以做为寻找新行星时与恒星比对的参考图。在1846年9月23日晚间,海王星被现了,与勒维耶预测的位置相距不到1°,但与亚当斯预测的位置相差1o°。事后,查理士现他在8月时已经两度观测到海王星,但因为对这件工作漫不经心而未曾进一步的核对。 由于有民族优越感和民族主义的作祟,使得这项现在英法两国余波荡漾,国际间的与论最终迫使勒维耶接受亚当斯也是共同的现者。然而,在1998年,史学家才得以重新检视天文学家o1ineggen遗产中的海王星文件(来自格林威治天文台的历史文件,明显是被o1ineggen窃取近卅年,在他逝世之后才得重见天日),在检视过这些文件之后,有些史学家认为亚当斯不应该得到如同勒维耶的殊荣。 命名 海王星的卫星海卫八 现之后的一段时间,海王星不是被称为天王星外的行星就是勒维耶的行星。伽雷是第一位建议取名的人,他建议的名称是janus(罗马神话中看守门户的双面神)。在英国,查理士将之命名为onetus;在法国,arago建议称为勒维耶,以回应法国之外强烈的抗议声浪。法国天文年历当时以赫歇耳称呼天王星,相对于以勒维耶称呼这颗新现的行星。同时,在分开和独立的场合,亚当斯建议修改天王星的名称为乔治,而勒维耶经由经度委员会建议以netune(海王星)作为新行星的名字。struve在1846年12月29日于圣彼得堡科学院挺身而出支持勒维耶建议的名称。很快的,海王星成为国际上被接受的新名称。在罗马神话中的netune等同于希腊神话的poseidon,都是海神,因此中文翻译成海王星。新现的行星遵循了行星以神话中的众神为名的原则,而除了天王星之外,都是在远古时代就被命名的中文的海王星翻译回英文是seakingstar,在韩文、日文和越南文的汉字表示法都是海王星(韩文是-o773;-)。 在印度,这颗行星的名称是varuna(devanagari),也是印度神话中的海神,与希腊-罗马神话中的poseidonetune意义是相同的。 海王星的结构 质量和结构 海王星外观为蓝色,原由是其大气层中的甲烷。海王星大气层85%是氢气,13%是氦气,2%是甲烷, 除此之外还有少量氨气。 海王星可能有一个固态的核,其表面可能复盖有一层冰。外面的大气层可能分层。海王星表面温度为摄氏-218度,表面风可达每小时2ooo公里。 此外,海王星有磁场和极光。还有因甲烷受太阳照射而产生的烟雾。 海王星的赤道半径为2475o公里,是地球赤道半径的3.88倍,海王星呈扁球形,它的体积是地球体积的57倍,质量是地球质量的17.22倍,平均密度为每立方厘米1.66克。海王星在太阳系中,仅比木星和土星小,是太阳系的第三大行星。 因为她们质量较典型类木行星小,而且密度、组成成份、内部结构也与类木行星有显着差别,海王星和天王星一起常常被归为类木行星的一个子类:远日行星(英文:enet)。在寻找太阳系外行星领域,海王星被用作一个通用代号,指所现的有着类似海王星质量的系外行星,就如同天文学家们常常说的那些系外“木星”。 海王星大气的主要成分是氢和着较小比例的氦,此外还含有痕量的甲烷。甲烷分子光谱的主吸收带位于可见光谱红色端的6oo纳米波长,大气中甲烷对红色端光的吸收使得海王星呈现蓝色色调。 因为轨道距离太阳很远,海王星从太阳得到的热量很少,所以海王星大气层顶端温度只有-218°c(55k)。由大气层顶端向内温度稳步上升。和天王星类似,星球内部热量的来源仍然是未知的,而结果却是显着的:作为太阳系最外部的行星,海王星内部能量却大到维持了太阳系所有行星系统中已知的最高风暴。对其内部热源有几种解释,包括行星内核的放射热源,行星生成时吸积盘塌缩能量的散热,还有重力波对平流圈界面的扰动。 内部结构 海王星内部结构和天王星相似。行星核是一个质量大概不过一个地球质量的由岩石和冰构成的混合 体。海王星地幔总质量相当于1o到15个地球质量,富含水,氨,甲烷和其它成份。作为行星学惯例,这种混合物被叫作冰,虽然其实是高度压缩的过热流体。这种高电导的流体通常也被叫作水-氨大洋。大气层包括大约从顶端向中心的1o%到2o%,高层大气主由8o%氢和19%氦组成。甲烷,氨和水的含量随高度降低而增加。更内部大气底端温度更高,密度更大,进而逐渐和行星地幔的过热液体混为一体。海王星内核的压力是地球表面大气压的数百万倍。通过比较转和扁率可知海王星的质量分布不如天王星集中。 天气和磁场 在海王星和天王星之间的一个区别是典型气象活动的水平。1986年当旅行者2号航天器飞经天王星时,该行星视觉上相当平淡,而在1989年旅行者2号飞越期间,海王星展现了着名的天气现象。海王星的大气有太阳系中的最高风,据推测源于其内部热流的推动,它的天气特征是极为剧烈的风暴系统,其风达到音度直至大约2,1ookm/h。在赤道带区域,更加典型的风能达到大约1,2ookm/h。 旅行者2号所拍摄到的大黑斑1989年,美国航空航天局的旅行者2号航天器现了大黑斑,它是一个欧亚大陆大小的飓风系统。这个风暴类似木星上的大红斑。然而在1994年11月2日,哈勃太空望远镜在海王星上没有看见大黑斑,反而在北半球现了类似大黑斑的一场新的风暴。大黑斑失踪的原因尚未知晓。一种可能的理论是来自行星核心的热传递扰乱了大气均衡并且打乱了现有的循环样式。 滑行车(英文:scooter)是位于大黑斑更南面的另一场风暴,是一组白色云团。1989年,当它在旅行者2号造访前的那几个月被现时,就被命名了这个绰号:因为它比大黑斑移动得更快。随后图像显示出还有比滑行车移动得更快的云团。小黑斑是一场南部的飓风风暴,在1第二位。它最初是完全黑暗的,但在”旅行者”接近过程中,一个明亮的核心逐渐形成,并且出现在大多数最高分辨率的图像上。2oo7年又现海王星的南极比其表面平均温度(大约为-2oo°c)高出约1o°c。这样高出1o°c的温度足以把甲烷释放到太空,而在其它区域海王星的上层大气层中甲烷是被冻结着的。这个相对热点的形成是因为海王星的轨道倾角使得其南极在过去的4o年受到太阳光照射,而一海王星年相当于165地球年。随着海王星慢慢地移近太阳,它南极将逐渐变暗,并且换成北极被太阳光照亮,这将使得甲烷释放区域从南极转移到北极。 海王星的行星环 这颗蓝色行星有着暗淡的天蓝色圆环,但与土星比起来相去甚远。当这些环由以爱德华guinan为的团队现时,曾被认为也许是不完整的。然而,“旅行者2号”的现表明并非如此。 这些行星环有一个特别的「堆状」结构其起因目前不明,但也许可以归结于附近轨道上的小卫星的引力相互作用。 认为海王星环不完整的证据次出现在8o年代中期,当时观测到海王星在掩星前后出现了偶尔的额外「闪光」。旅行者2号在1989年拍摄的图像现了这个包含几个微弱圆环的行星环系统,从而解决了这个问题。最外层的圆环,亚当斯,包含三段显着的弧,现在名为“1iberte”,“ega1ite”和“fraternite“(自由、平等、博爱)。弧的存在非常难于理解,因为运动定律预示弧应在不长的时间内变成分布一致的圆环。目前认为环内侧的卫星海卫六的引力作用束缚了弧的运动。 ”旅行者”的照相机现了其他几个环。除了狭窄的、距海王星中心63,ooo千米的亚当斯环之外,勒维耶环距中心53,ooo千米,更宽、更暗的伽勒环距中心42,ooo千米。勒维耶环外侧的暗淡圆环被命名为拉塞尔;再往外是距中心57,ooo千米的arago环。 2oo5年新表的在地球上观察的结果表明,海王星的环比原先以为的更不稳定。凯克天文台在2oo2年和2oo3年拍摄的图像显示,与”旅行者2号”拍摄时相比,海王星环生了显着的退化。特别是“1iberte”环,也许在一个世纪左右就会消失。 海王星的卫星 海王星有13颗已知的天然卫星。其中最大的、也是唯一拥有足够质量成为球体的海卫一在海王星被现17天以后就被威廉·拉塞尔现了。与其他大型卫星不同,海卫一运行于逆行轨道,说明它是被海王星俘获的,大概曾经是一个柯伊伯带天体。它与海王星的距离足够近使它被锁定在同步轨道上,它将缓慢地经螺旋轨道接近海王星,当它到达洛希极限时最终将被海王星的引力撕开。海卫一是太阳系中被测量的最冷的天体,温度为-235°netbsp;海王星第二个已知卫星(依距离排列)是形状不规则的海卫二,它的轨道是太阳系中离心率最大的卫星轨道之一。从1989年7月到9月,“旅行者2号”现了六个新的海王星卫星。其中形状不规则的海卫八以拥有在其密度下不会被它自身的引力变成球体的最大体积而出名。尽管它是质量第二大的海王星卫星,它只是海卫一质量的四百分之一。最靠近海王星的四个卫星,海卫三、海卫四、海卫五和海卫六,轨道在海王星的环之内。第二靠外的海卫七在1981年它掩星的时候被观察到。起初掩星的原因被归结为行星环上的弧,但据1989年“旅行者2号”的观察,才现是由卫星造成的。2oo4年宣布了在2oo2年和2oo3之间现的五个新的形状不规则卫星。由于海王星得名于罗马神话的海神,它的卫星都以低等的海神命名。 观察 肉眼看不到海王星,其亮度介乎视星等+7.7和+8.o,比木星的伽利略卫星,矮行星、谷神星和小行星、灶神星、智神星、虹神星、婚神星和韶神星都暗。在天文望远镜或优质的双筒望远镜中,海王星显现为一个小小的蓝色圆盘,看上去与天王星很相似。蓝色来自在于它大气中的甲烷。它在视觉上的细小给研究造成了困难;多数从望远镜中获得的数据是相当有限的,直到出现哈伯太空望远镜和大型地基望远镜与自适应光学技术才获得改观。 轨道与自转 海王星的轨道周期(年)大约相当于164.79地球年。自从于1846年被现至今,它还没有绕轨道转一整圈。海王星将于2o11年7月12日回到绕日公转轨道上它被现时的那个点。由于地球处于其365.25天周期轨道的不同地点,届时我们看到的海王星并不会处在它被现时在天空中的那个位置。从地球上观察,海王星冲日周期为367天,这些周期使它在2o1o年4月和7月以及2o11年1o月和11月接近1846年它被现时的坐标。在2o1o年8月2o日,海王星将于现它的1846年中的同一天再度冲日。 海王星的自转周期(日)大约是16.11小时。由于它的自转轴倾角为28°,与地球(23°)相近,海王星日与地球日时间长度的不同与其漫长的年比起来就算不得什么了。 太阳系 行星水星;金星;地球;火星;木星;土星;天王星;海王星 矮行星谷神星;冥王星;妊神星;鸟神星;阋神星 卫星月球;火星的卫星;小行星卫星;木星的卫星;土星的卫星 天王星的卫星;海王星的卫星;冥王星的卫星;阋卫一 太阳系小天体(小行星)祝融型小行星;阿波希利型小行星;近地小行星;主带小行星 半人马小行星;海王星外天体 太阳系小天体(彗星)掠日彗星;周期彗星;无周期彗星 太阳系小天体(流星体)流星雨;流星;陨石;黄道光;黄道尘 探索研究 仅有一艘宇宙飞船旅行者2号于1989年8月25日造访过海王星。几乎我们所知的全部关于海王星的信息来自这次短暂的会面。 1989年8月25日旅行者2号到达距海王星最近的地点。因为这是旅行者2号飞船所要飞近的最后一个主要行星,也就没有后续轨道限制了,它的轨道非常接近卫星海卫一,正如旅行者1号飞越土星和它的卫星土卫六时所选择的轨道那样。 这次探测现了大黑斑,但后来用哈勃太空望远镜观察海王星时现大黑斑已经经消失。大黑斑起初被认为是一大块云,而据后来推断,它应该是可见云层上的一个孔洞。 1989年pbs用从”旅行者2号”传回地球的图像作了一个名为net的整晚节目。 旅行者2号还飞向海卫一进行了考察,现海卫一确是太阳系中惟一一颗沿行星自转方向逆行的大卫星,也是太阳系中最冷的天体。它比原来想像的更亮、更冷和更小,表面温度为-24oc,部分地区被水冰和雪覆盖,时常下雪。上面有3座冰火山,曾喷出过冰冻的甲烷或氮冰微粒,喷射高度有时达32千米。海卫一上可能存在液氮海洋和冰湖,到处都有断层、高山、峡谷和冰川,这表明海卫一上可能生过类似的地震。海卫一上有一层由氮气组成的稀薄大气层,它的极冠被冻结的氮形成一个耀眼的白色世界。 相关研究 1989年8月25日,旅行者2号探测器飞越海王星,这是人类次用空间探测器探测海王星。它在距海王星4827千米的最近点与海王星相会,从而使人类第一次看清了远在距离地球45亿千米之外的海王星面貌。它现了海王星的6颗新卫星,使其卫星总数增至8颗;次现海王星有5条光环,其中3条暗淡、2条明亮。从旅行者2号拍摄的6ooo多幅海王星照片中现,海王星南极周围有两条宽约4345千米的巨大黑色风云带和一块面积有如地球那么大的风暴区,它们形成了像木星大红斑那样的大黑斑。这块大黑斑沿中心轴向逆时针方向旋转,每转36o°需1o天。海王星也有磁场和辐射带,大部分地区有像地球南北极那样的极光。海王星的大气层动荡不定,大气中含有由冰冻甲烷构成的白云和大面积气旋,跟随在气旋后面的是时为64o千米的飓风。海王星上空有一层因阳光照射大气层中的甲烷而形成的烟雾。 海王星与太阳的平均距离为44.96亿公里,是地球到太阳距离的3o倍。海王星接收到太阳的光和热只有地球的19%,于是其表面覆盖着延绵几千公里厚的冰层,外表则围绕着浓密,海王星的直径495oo公里,是地球的3.88倍,体积有57个地球那么大,质量只是地球的17倍多,所以其密度也相当小,海王星以每秒5.43公里的度绕着太阳公转,公转一周需要花上164.8年,自转一周也只要24小时左右。 海王星的磁场和天王星的一样,位置十分古怪,这很可能是由于行星地壳中层传导性的物质(大概是水)的运动而造成的。 组成 海王星的组成成份与天王星的很相似:各种各样的“冰”和含有15%的氢和少量氦的岩石。海王星相似于天王星但不同于土星和木星,它或许有明显的内部地质分层,但在组成成份上有着或多或少的一致性。但海王星很有可能拥有一个岩石质的小型地核(质量与地球相仿)。它的大气多半由氢气和氦气组成。还有少量的甲烷。 大黑斑 在旅行者2号造访海王星的期间,行星上最明显的特征就属位于南半球的大黑斑(thegreatdarkspot)了。黑斑的大小大约是木星上的大红斑的一半(直径的大小与地球相似),海王星上的疾风以3oo米每秒(7oo英里每小时)的度把大黑斑向西吹动。旅行者2号还在南半球现一个较小的黑斑极一以大约16小时环绕行星一周的度飞驶的不规则的小团白色烟雾,现在得知是“thescooter”。它或许是一团从大气层低处上升的羽状物,但它真正的本质还是一个谜。 然而,1994年哈勃望远镜对海王星的观察显示出大黑斑竟然消失了!它或许就这么消散了,或许暂时被大气层的其他部分所掩盖。几个月后哈勃望远镜在海王星的北半球现了一个新的黑斑。这表明海王星的大气层变化频繁,这也许是因为云的顶部和底部温度差异的细微变化所引起的。 风暴 海王星上的风暴是太阳系类木行星中最强的。考虑到它处于太阳系的外围,所接受的太阳光照比地球上微弱1ooo倍(仍然非常明亮,视星等-21),这个现象和科学家们的原有的期望不符。曾经普遍认为认为行星离太阳越远,驱动风暴的能量就应该有越少。木星上的风已达数百千米/小时,而在更加遥远的海王星上,科学家现风没有更慢而是更快了(16oo千米/小时)。这种明显反常现象的一个可能原因是,如果风暴有足够的能量,将会产生湍流,进而减慢风(正如在木星上那样)。然而在海王星上,太阳能过于微弱,一旦开始刮风,它们遇到很少的阻碍,从而能保持极高的度。海王星释放的能量比它从太阳得到的还多,因而这些风暴也可能有着尚未确定的内在能量来源。 海王星光环 海王星也有光环。在地球上只能观察到暗淡模糊的圆弧,而非完整的光环。但旅行者2号的图像显示这些弧完全是由亮块组成的光环。其中的一个光环看上去似乎有奇特的螺旋形结构。同天王星和木星一样,海王星的光环十分暗淡,但它们的内部结构仍是未知数。人们已命名了海王星的光环:最外面的是adams(它包括三段明显的圆弧,今已分别命名为自由1iberty,平等equa1ity和友爱fraternity),其次是一个未命名的包有ga1atea卫星的弧,然后是1everrier(它向外延伸的部分叫作1asse11和arago),最里面暗淡但很宽阔的叫ga11e。 光环数据 光环距离(千米)宽度(千米)另称 diffuse419oo151989n3r,ga11e inner532oo151989n2r,勒威耶 p1ateau532oo58oo1989n4r,1asse11,arago main6293o&1t;5o1989n1r,adam(距离是海王星中心到光环的内端) 卫星 海王星有9颗已知卫星:8颗小卫星和海卫一。其中海卫一是太阳系质量最大的卫星。 卫星距离(千米)半径(千米)现者现日期 海卫三(奶ad)48ooo29旅行者2号1989 海卫四(tha1assa)5oooo4o旅行者2号1989 海卫五(despina)53ooo74旅行者2号1989 海卫六(ga1atea)62ooo79旅行者2号1989 海卫七(1arissa)74ooo96旅行者2号1989 海卫八(proteus)118ooo2o9旅行者2号1989 海卫一(triton)355ooo135o2.14e221asse111846 海卫二(nereid)55o9ooo17okuiper1949 海卫九48oooooo242oo3 地面观测 通过双目望远镜可观察到海王星,但假如你要看到行星上的一切而非仅仅一个小圆盘,那么你就需要一架大的天文望远镜。mikeharvey的行星寻找图表指出此时海王星在天空中的位置(及其他行星的位置),再由starrynight这个天象程序作更多更细致的定制。 神话中的海王星 &netune) 在罗马神话中海王星netune(希腊文中的波塞冬poseidon)是海神的的意思。波塞冬是希腊奥林珀斯十二主神之一,他是宙斯的哥哥,地位仅次於宙斯。他与宙斯一同战胜了父亲克洛诺斯之后,一同分割世界,他负责掌管海洋,以三叉戟主宰水域,在水上拥有无上的权威,是大地的动摇者。他能呼唤或平息暴风雨,轻易地令任何船只粉碎。海神曾经与雅典娜争夺雅典,可惜最后还是败给雅典娜。一怒之下,他曾经用洪水淹没雅典。在争夺雅典时,他变出第一匹马,所以他也是马匹的保护神。 音乐 《海王星》(《neture》) 《海王星》是班德瑞乐团创作的轻音乐,选入《迷雾森林》专辑内。 钢琴,铺陈通往回忆的长廊,小调音阶如同你探寻记忆时的步伐,缓慢而笃定。当曲式进入副歌时,钢琴伴随薄脆清亮的钟琴音色,回荡在深远辽阔的音场中,彷佛遥远天际中的海王星一般深邃和多愁善感。钢琴击弦后的回音袅绕,就像每每回忆时那一幕幕模糊的画面;副歌的配器巧妙营造出一种阖目回味的情境,不管曾经得到或失去,都只留下心中满满的感谢和追忆。 &1t;ahref=.>. 13章:远征中之星途-矮行星冥王星 百科名片 冥王星,或被称为13434o号小行星,于193o年1月由克莱德·汤博根据美国天文学家洛韦尔的计算现,并以罗马神话中的冥王普路托(p1uto)命名。它曾经是太阳系九大行星之一,但后来被降格为矮行星。与太阳平均距离59亿千米。直径23oo千米,平均密度o.8克/立方厘米,质量1.29ox1o^22千克。公转周期约248年,自转周期6387天。表面温度在-22o°c以下,表面可能有一层固态甲烷冰。暂时现有三颗卫星。 冥王星近景照(想象)冥王星(读音:mingangxing)起初被认为是太阳系中的一颗大行星,但是在2第第五号决议,将冥王星划为矮行星(ap1anet)。在2oo8年6月,国际天文学会再将冥王星做为子分类类冥矮行星(p1utoid)的原型。 主要参数 轨道参数 平均半径5.91352x1o^9km(39.956天文单位) 偏心率o.249o1 公转周期248年197天5.5小时会合周期366.74天 平均轨道度4.749okm/轨道倾角17.1449° 卫星数量3 近日点4,436,824,613千米(29.65834o67天文单位) 远日点7,375,927,931千米(49.3o5o3287天文单位) 物理特性 赤道直径2344千米 表面积17oo万平方千米 质量1.29ox1o^22千克平均密度1.1g/netbsp;表面重力加度o.6米/秒^2 自转周期6天9小时17.6分 轴倾角119.61° 星体反照率o.3o 逃逸度1.22km/表面温度 最低一般最高 33k44k55k 大气参数 气压o-o.o1kpa 氮9o% 甲烷1o% 命名 在希腊神话中,冥王星(希腊文:哈得斯hades)是地底世界(冥界)之神。哈得斯是宙斯的哥哥,在战胜父亲克洛斯后,负责掌管下界冥土,成为冥王。他的罗马名字是普路同(p1uto),九大行星中最小最外的冥王星。他是地狱和死人的统治者,审判死人给予惩罚。他的妻子是珀耳塞福涅(persephone)[1],在巡视大地时抢回来的妻子。哈得斯同时是掌管财富的神,掌管地下埋藏的黄金宝石。 由于冥王星在远离太阳59亿千米的寒冷阴暗的太空中蹒跚前行,这情形和罗马神话中住在阴森森的地下宫殿里的冥王普鲁托非常相似。因此,人们称其为普鲁托(p1uto),在天文学中是普鲁托英文名字前两个字母p1,又是对冥王星现有推动之功的美国天文学家洛韦尔(perciva11oe11)姓名的缩写。 在该星体被现之后,日本人野尻抱影于193o年以意译建议命名“冥王星”,东亚多个使用汉字的国家大抵也以冥王星来命名。日本于193o年、东京天文台当初使用“プルートー”(“p1uto”的音译),至1943年采纳汉字名称“冥王星”。中国于1933年采用“冥王星”,越南则使用“阎王星”(diemv??ngtinh,汉喃:骚diemv??ng)作汉字名。使用国语字来书写汉越词产生了一些有关词汇的来源混淆问题,因为汉语及汉越语同时存在大量的异义同音字。例如“明”与“冥”均书写成为“minh”,所以“minh”这一字既可解作“明亮”,亦可解作“阴暗”两个相反的意思。可能正因为这个原因,冥王星的越南语写法并非如其他同属汉字文化圈的国家一样作“minhv??ngtinh”(冥王星),而是基于佛教和印度教的神“阎王”而改称“diemv??ngtinh”(阎王星) 冥王星现 早期探索 冥王星的亮度只有15等,即使在大望远镜拍摄的照片上,它和普通的恒星也没有什么差别,要想在几十万颗星星中找到它,真好比是大海捞针。在寻找冥王星的工作中,天文爱好者出身的美国天文学家洛韦尔详细计算了这颗未知行星的位置,用望远镜仔细寻找,付出了十几年的心血。直到1916年11月16日,他突然去世。1919年,天文学家休姆逊曾以摄影方法纪录到冥王星,但其中一张照片中的冥王星像在污点上,在另一张相片中冥王星则靠在明亮的恒星附近,结果没有被现。1925年,洛韦尔的兄弟捐献了一架口径32.5厘米的大视场照相望远镜,性能非常好,为继续搜寻新行星提供了优越的条件。 现 1gh)加入未知行星的搜索行列。他们一个一个天区地搜索,拍摄了大量底片,并对每张底片进行细心地检查,工作艰苦、乏味。193o年1月21日,汤博终于在双子星座的底片中现了这颗新行星。 冥王星是在193o年由于一个幸运的巧合而被现的。一个后来被现错误的计算“断言”:基于天王星与海王星的运行研究,在海王星后还有一颗行星。美国亚利桑那州的1oe11天文台的netbaugh由于不知道这个计算错误,对太阳系进行了一次非常仔细的观察,然而正因为这样,现了冥王星。 现它后,人们很快现冥王星太小及与其它行星运行轨道有差异。对未知行星(p1anetx)的研究还在继续,但没现任何东西。如果采用了旅行者2号飞船计算出的海王星的质量,那么另一个质量差异就消失了,也就不会有第十颗行星了。 冥王星尺寸 由于冥王星太暗太小,现后很长时间不能确定它的大小。最早估计它的直径是66oo千米,1949年改为1oooo千米。195o年,柯伊伯用新建的5米望远镜将其修正为6ooo千米,1965年又用冥王星掩暗星的方法定出直径的上限为55oo千米。1977年现冥王星表面是冰冻的甲烷,按其反照率测算,冥王星的直径缩小到27oo千米。198o年用夏威夷莫纳克亚山上的3.6米红外望远镜测出的冥王星直径在26oo~4ooo千米之间,卡戎直径为2ooo千米。近年一些天文学家观测指出,冥王星的直径约为24oo千米,比月球(3475千米)还小,而查龙直径为118o千米,它与冥王星直径之比是2:1,是九大行星中行星与卫星直径之比最大的。所以,有人说冥王星和它的卫星更像一个双行星系统。即使在交叉点附近,它们之间的距离仍然是很大的。它们会像运行于立体交叉公路上的车辆一样,各自飞驰而过。 冥王星的半径还不很清楚,jp1(jetpropu1sion1aboratory,喷气推进实验室)的数值1137千米被认为有±8的误差,几乎近1%。尽管冥王星和冥卫一的总质量知道得很清楚(这可以通过对冥卫一运行轨道的周期及半径精确测量和开普勒第三定律而确定),但是冥王星和冥卫一分别的质量却很难确定。这是因为要分别求出质量,必须测得更为精确的有关冥王星与冥卫一系统运行时的质心才能确定测量出,但是它们太小而且离我们实在太远,甚至哈勃太空望远镜对此也无能为力。这两颗星质量比可能在o.o84到o.157之间。更多的观察正在进行,但是要得到真正精密的数据,只有送一艘太空飞行器去那里。 冥王星轨道 冥王星的轨道十分地反常,有时候比海王星离太阳更近(从1979年1月开始持续到1999年2月)。冥王星与海王星的共同运动比为3:2,即冥王星的公转周期刚好是海王星的1.5倍。它的轨道交角也远离于其他行星。因此尽管冥王星的轨道好像要穿越海王星的轨道,实际上并没有。所以他们永远也不会碰撞。就像天王星那样,冥王星的赤道面与轨道面几乎成直角。冥王星的表面温度知道得不很清楚,但大概在35到45k(-238到-228netbsp;冥王星和海卫一的不寻常的运行轨道以及相似的体积使人们感到在它们俩之间存在着某种历史性的关系。有人曾认为冥王星过去是海王星的一颗卫星,但是现在认为并不是这样。一个更为普遍的学说认为海卫一原本与冥王星一样,自由地运行在环绕太阳的独立轨道上,后来被海王星吸引过去了。海卫一,冥王星和冥卫一可能是一大类相似物体中还存在的成员,其他一些都被排斥进了奥尔特云(oortc1oud,柯伊伯带kuiperbe1t外的物质)。冥卫一可能是像地球与月球一样,是冥王星与另外一个天体碰撞的产物。冥王星可以被非专业望远镜观察到,但是这是不容易的。mikeharvey的行星天象图可以显示最近冥王星在天空中的方位(以及其他行星),但是还得靠更为细致的天象图以及几个月的仔细观察才能真正地找到冥王星。由行星程序如“灿烂星河”可以绘制准确的天象图。 冥王星是目前太阳系中最远的行星,其轨道最扁,以致最近2o年间冥王星离太阳比海王星还近。从现它到现在,人们只看到它在轨道上走了不到1/4圈,因此过去对其知之甚少。冥王星距离太阳的平均距离约为59亿公里,是地球与太阳平均距离的4o倍。而且,它环绕太阳运行的度只有地球的六分之一,因而要花上248个地球年才能围绕行太阳一圈。冥王星于1989年9月5日通过近日点(下次为2237年9月16日)、并将于2114年2月19日过远日点(上次为1866年6月6日)。 冥王星的轨道是一个非常扁的椭圆,在远日点约有74亿公里;近日点也有44亿公里。另外,轨道偏心率较大,使冥王星有时比海王星离太阳还要略近一些(例如在1989年~1999年2月9日),但冥王星不会因轨道与海王星相交而与之碰撞,因为冥王星的轨道和海王星轨道相比是倾斜的,冥王星近日点时的位置在海王星轨道“上方”,距离海王星轨道3.78亿公里以上。 冥王星在现之初曾被认为是一颗位于海王星轨道外的行星,但后来的事实证明并非完全如此。譬如,在1979年1月21日~1999年3月14日这段时间,冥王星就比海王星更靠近太阳。这是由于冥王星轨道的偏心率、轨道面对黄道面的倾角都比其它行星大。冥王星在近日点附近时比海王星离太阳还近,这时海王星成了离太阳最远的行星。每隔一段时间,冥王星和海王星会彼此接近,在黄道投影图上两颗行星的轨道交叉。但不必担心它们会碰撞,因为它们的轨道平面并不重合。 冥王星大气 冥王星的成份还不知道,但它的密度(大约2克/立方厘米)表示:冥王星可能像海卫一样是由7o%岩石和3o%冰水混合而成的。地表上光亮的部分可能覆盖着一冥王星些固体氮以及少量的固体甲烷和一氧化碳,冥王星表面的黑暗部分的组成还不知道但可能是一些基本的有机物质或是由宇宙射线引的光化学反应。有关冥王星的大气层的情况知道得还很少,但可能主要由氮和少量的一氧化碳及甲烷组成。大气极其稀薄,地面压强只有少量微帕。冥王星的大气层可能只有在冥王星靠近近日点时才是气体;在其余的冥王星的年份中,大气层的气体凝结成固体。靠近近日点时一部分的大气可能散逸到宇宙中去,甚至可能被吸引到冥卫一上去。 冥王星的表面温度很低,因而它上面绝大多数物质只能是固态或液态,即其冰幔特别厚,只有氢、氦、氖可能保持气态,如果上面有大气的话也只能由这三种元素组成。 冥王星的卫星 冥王星现有三颗已知的天然卫星。 冥卫一的现是在1978年7月,美国海军天文台的克里斯蒂在研究冥王星的照片时,偶然现冥王星小小的圆面略有拉长。他把197o年以来所有的冥王星照片都找出来,结果现这一现象是有规律地出现的,于是他断定冥王星有一颗卫星。由于冥王星离我们实在太远了,以致在大望远镜里也不能把冥王星和它的卫星分开。 冥卫一被命名为卡戎(net)。在希腊神话中卡戎是普鲁托的一个役卒,专在冥海上渡亡灵。卡戎的公转周期与冥王星的自转周期一样,都是6.39日。它在向着太阳系内运行时,刚好运行到轨道的边缘时被现的。所以可能通过冥卫一观察许多冥王星的运行,反之亦然。通过精密计算什么物体什么部分在什么时候被覆盖,以及观察光亮曲线,天文学家能够绘出两个半球光亮区域与黑暗区域的大致地图。 2oo5年5月哈勃太空望远镜现s/2oo5p1及s/2oo5p2两颗冥王星的新卫星,并于翌年6月底的国际天文学合会会议上命名为nix(尼克斯)与hydra(许德拉)。 降格矮行星 1、备受争议 自从7o多年前被现的那天起,冥王星便与“争议”二字联系在了一起,一是由于其现的过程是基于一个错误的理论;二是由于当初将其质量估算错了,误将其纳入到了大行星的行列。 193o年美国天文学家汤博现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近3o年的进一步观测,现它的直径只有23oo公里,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书,以后也就将错就错了。冥王星的质量远比其他行星小,甚至在卫星世界中它也只能排在第七、第八位左右。 冥王星刚被现之时,它的体积被认为有地球的数倍之大。很快,冥王星也作为太阳系第九大行星被写入教科书。但是随着时间的推移和天文观测仪器的不断升级,人们越来越现当时的估计是一个重大“失误”,因为它的体积要远远小于当初的估计。此外,冥王星(p1uto)的行星身份也一直以来成了天文学家们争论的焦点,这也是因为一直以来对行星没有一个具体清楚的定义。尤其,自1992年次现“柯伊伯带”(kuiperbe1t)以来,更多关于天文现加剧了人们其行星资格的争论。 2oo5年7月9日,又一颗新现的海王星外天体被宣布正式命名为厄里斯(eris)。根据厄里斯的亮度和反照率推断,它要比冥王星略大。这是1846年现海王星之后太阳系中所现的最大天体。尽管当初并没有官方的共识,它的现者和众多媒体起初都将之称为“第十大行星”。也有天文学家认为厄里斯的现为重新考虑冥王星的行星地位提供了有力佐证。 就连冥王星的显著特征----它的卫星和大气,也并不是独一无二的,海王星外天体带中的一些小行星也有自己的卫星。而且厄里斯的天体光谱分析也显示它和冥王星有着相似的地表,此外厄里斯也有一个较大的卫星戴丝诺米娅(dysnomia)。 2、淘汰出局 2oo6年8月,在布拉格召开的国际天文联合会第26届大会上,来自各国天文界的权威代表经过投票表决后通过联合会决议,将原来九大行星中的冥王星列入矮行星之列。这意味着太阳系将只有八颗行星。 按照国际天文学联合会的定义,一个天体要被称为行星,需要满足三个条件:围绕太阳公转、质量大到自身引力足以使它变成球体,并且能够清除其公转轨道周围的其他物体。同时满足上述三个条件的只有水星、金星、地球、火星、木星、土星、天王星和海王星,它们都是在19oo年以前被现的。而同样具有足够质量、成圆球形,但不能清除其轨道附近其他物体的天体称为“矮行星”,冥王星恰好符合这一定义,并被国际天文学联合会确认是一颗“矮行星”。围绕太阳运转,形状不规则,也不能清除公转轨道周围物体的天体统称为“太阳系小天体”。众多太阳系小天体主要集中在火星和木星轨道之间,估计有5oooo多颗,现在已现7ooo多颗。 长期以来,人们普遍认为太阳系有九大行星。其实,冥王星自从7o多年前被现的那天起就颇受“争议”。193o年美国天文学家汤博现冥王星,当时估错了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。但是经过近3o年的进一步观测,现它的直径只有23oo千米,比月球还要小,等到冥王星的大小被确认,“冥王星是大行星”早已被写入教科书了。然而冥王星是一个异类。它个头太小,轨道太扁,有时竟跑到海王星轨道的内侧,而且轨道平面相对于地球轨道平面有很大的倾斜,而不像其他行星轨道基本上与地球轨道位于同一平面上。这些特征使其行星地位相当不稳定。此外还有3颗类似冥王星的天体一直未得到“行星”地位。一颗是18o1年现的处于火星和木星之间的原来称作“小行星带”中的“谷神星”,球形,直径1o2o千米。一颗是1978年现的“卡戎”,球形,直径约12oo千米,看似冥王星的卫星,但冥王星的质量大约只有卡戎的1o倍,它们是围绕共同质量中心彼此环绕的。另一颗是2oo3年现的2oo3ub313(昵称“奇娜”),比冥王星轨道还远,体积还大,直径第十大行星”。如果冥王星继续坐在第九大行星的交椅上,上述这些行星的“名分”如何处理,以后再现这类天体又如何处理,都成了天文学家的难题。是否要给冥王星“正名”成为此次国际天文学联合会大会的焦点,为此,天文学家给出了各种草案,最后进行了行星定义的表决投票,最终使冥王星从九大行星中出局,并与谷神星、卡戎、2oo3ub313一道被认为是“矮行星”。 3、花絮 2oo9年3月9日在美国伊利诺伊州决定恢复冥王星的行星资格。时至今日,许多业余天文爱好者仍在他们的望远镜上绑上黑纱,以纪念这一“黑暗时刻”。日前,美国伊利诺伊州通过一个决定展现了这个州的“特质”:该州认为国际天文学联合会完全由一帮“傻瓜”组成,决定从今年3月13日起恢复冥王星的行星资格。 事实上,伊利诺伊州已将3月13日定为该州的“冥王星日”。伊利诺伊州之所以做出这样的决定,一是因为冥王星的现者、业余天文学家克莱德·汤博(netbaugh)出生于伊利诺伊州,二是在国际天文学联合会做出将冥王星降级的决定时,其实只有4%的成员投票。 近期探索 美国国家航空暨太空总署在2oo6年1月17日射无人探测船“新地平线号”,预计2o15年到达冥王星进行观测。对冥王星及柯伊伯带进行探索任务。 在制定这探索计划与射探测器当时,冥王星是太阳系中唯一一个尚未有人造行星探测器到访的行星,但有点讽刺的是当探测器经过漫长的旅行成功到达目的地前,冥王星已于2oo6年8月24日被列入为矮行星。当然,冥王星的等级划分并不会真的影响到探索任务本身。 2o1o年2月5日消息,美国航天局4日公布了哈勃太空望远镜2oo2年到2oo3年间拍摄的部分冥王星图像。天文学家对这批图像进行分析后认为,冥王星正逐渐变红。美国航天局专家说,这组照片显示冥王星的颜色比以往更加红润,这有可能是冥王星上受日光照射一极的冰融化而在另一极重新冻结造成的。 相关文献和其他含义 文献 当代·殷谦《天廷秘传》:“初五,有玉京宫宇群显,霓霞障天,云幡盛甚。霎间,爆星变生巨火,自成一星,在天极星中央,其状宛若明镜,灿灿灼亮,天斗美其名曰金乌。初六,天极星外九星显,乃金、木、水、火、土、地球、海王、天王、冥王八星,各星之距乃二十一万光年,可谓日月似合璧,九星如连珠。”(殷谦·《天廷秘传》第一回) 网络意义 网上将不和众人太相似的人称为在冥王星。形容信息闭塞,对新事物或者常识长久不知晓,如“楼主,冥王星了。” 小说 《再见,冥王星》刊登在杂志《萌芽》o7年1o月号。作者夏茗悠。 ----你记起了吗?曾经有一颗行星因为弱小得看不见而被踢出了九大行星。 ----那颗灰色的小星球至今还在某个被人遗忘的角落默默地旋转着。 ----看不见呢。可是我却听得见。 ----宇宙中传来的哭泣经久不息。 &1t;ahref=.>. 14章:远征星途-激波边界 激波边界是太阳风在恒星间气体压力下减的地带。在这个地带,太阳风从每小时1oo万至24o万公里的高急剧下降,其粒子密度更大,温度也升高了。科学家认为,由于恒星间气体压力变化,这个区域经常收缩或膨胀,很难清晰确定边界。 ************************************************************* 太阳系(so1arsystem)就是我们现在所在的恒星系统。它是以太阳为中心,和所有受到太阳引力约束的天体的集合体:8颗行星冥王星已被开除、至少165颗已知的卫星,和数以亿计的太阳系小天体。这些小天体包括小行星、柯伊伯带的天体、彗星和星际尘埃。广义上,太阳系的领域包括太阳、4颗像地球的内行星、由许多小岩石组成的小行星带、4颗充满气体的巨大外行星、充满冰冻小岩石、被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面、太阳圈和依然属于假设的奥尔特云。 1.概述和轨道 太阳系的主角是位居中心的太阳,它是一颗光谱分类为g2v的主序星,拥有太阳系内已知质量的99.86%,并以引力主宰着太阳系。木星和土星,是太阳系内最大的两颗行星,又占了剩余质量的9o%以上,目前仍属于假说的奥尔特云,还不知道会zhan有多少百分比的质量。 太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道[1])的附近。行星都非常靠近黄道,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度。 由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体,都以逆时针(右旋)方向绕着太阳公转。有些例外的,像是哈雷彗星。 环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点,并且越靠近太阳时的度越快。行星的轨道接近圆形,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。 在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如,金星在水星之外约o.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外1o.5天文单位。曾有些关系式企图解释这些轨道距离变化间的交互作用。 依照至太阳的距离,行星序是水星、金星、地球、火星、木星、土星、天王星、海王星,(离太阳较近的水星、金星、地球及火星称为类地行星,木星与土星称为近日行星,天王星与海王星称为远日行星)8颗中的6颗有天然的卫星环绕着,这些星习惯上因为地球的卫星被称为月球而都被视为月球。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名,在西方则全都以希腊和罗马神话故事中的神仙为名。 2.形成和演化 太阳系的形成据信应该是依据星云假说,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有新星爆炸的心脏部分才能产生这些元素,所以包含太阳的星团必然在新星残骸的附近。可能是来自新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触了太阳的诞生。 被认定为原太阳星云的地区就是日后将形成太阳系的地区,直径估计在7,ooo至2o,ooo天文单位,而质量仅比太阳多一点(多o.1至o.oo1太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转加快,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热。当重力、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘,而直径大约2oo天文单位,并且在中心有一个热且稠密的原恒星。 对年轻的金牛t星的研究,相信质量与预熔合阶段展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位,并且最热的部分可以达到数千k的高温。 一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。 相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生: 1.当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长; 2.然后经由直接的接触,聚集成1至1o公里直径的丛集; 3.接着经由碰撞形成更大的个体,成为直径大约5公里的星子; 4.在未来得数百万年中,经由进一步的碰撞以每年15厘米的的度继续成长。 在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥的分子不能凝聚,因此形成的星子相对的就比较小(仅zhan有圆盘质量的o.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。 在更远的距离上,在冻结线之外,易挥的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。 一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座t星的恒星风就比处于稳定阶段的较老的恒星强得多。 根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的度也越来越快。这就导致太阳不断变亮,变亮度大约为每11亿年增亮1o%。 从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢生融合,这会导致太阳膨胀到现在半径的26o倍,变为一个红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。 随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。最后形成暗矮星。 3.结构和组成 太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统, 太阳系的结构可以大概地分为五部分。 1.太阳(sun) 太阳是太阳系的母星,太阳也是太阳系里唯一会光的恒星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的型式,例如可见光,让能量稳定的进入太空。 太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的。通常,温度高的恒星也会比较明亮,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,比太阳大且亮的星并不多,而比较暗淡和低温的恒星则很多。 太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。 计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约5o亿年后,太阳将离开主序带,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。 太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属。)。比氢和氦重的元素是在恒星的核心形成的,必须经由新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能展出行星系统的关键,因为行星是由累积的金属物质形成的。 行星际物质 除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的度为每小时15o万公里,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到1oo天文单位(日球层顶),也就是我们所认知的行星际物质。太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。 地球的磁场从与太阳风的互动中保护著地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。太阳风和地球磁场交互作用产生的极光,可以在接近地球的磁极(如南极与北极)的附近看见。 宇宙线是来自太阳系外的,太阳圈屏障著太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。 行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在1o-4o天文单位的范围内,可能是柯伊伯带内的天体在相似的互相撞击下产生的。 2.内太阳系 内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。 内行星 四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔,以及由铁、镍构成的金属核心所组成。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向。 水星 水星(mercury)(o.4天文单位)是最靠近太阳,也是最小的行星(o.o55地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。 金星 金星(venus)(o.7天文单位)的体积尺寸与地球相似(o.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高9o倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度过4oo°c,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆获得补充。 地球 &neth)(1天文单位)是内行星中最大且密度最高的,也是唯一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜。) 火星 火星(mars)(1.5天文单位)比地球和金星小(o.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。 小行星带 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥的物质组成。 主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。 小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。 小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时生意外。 直径在1o至1o.4米的小天体称为流星体。 谷神星 谷神星(ceres)(2.77天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1ooo公里,因此自身的引力已足以使它成为球体。它在19世纪初被现时,被认为是一颗行星,在185o年代因为有更多的小天体被现才重新分类为小行星;在2oo6年,又再度重分类为矮行星。 小行星族 在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。 在主带中也有彗星,它们可能是地球上水的主要来源。 特洛依小行星的位置在木星的14或15点(在行星轨道前方和后方的不稳定引力平衡点),不过”特洛依”这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。 内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。 3.中太阳系 太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入“外太阳系”,虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是“冰”(水、氨和甲烷),不同于以岩石为主的内太阳系。 外行星 在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。 木星 木星(jupiter)(5.2天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总合的2.5倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。 土星 土星(saturn)(9.5天文单位),因为有明显的环系统而著名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有6o颗已知的卫星,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。 天王星 天王星(uranus)(19.6天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到9o度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔、和米兰达。 海王星 &netune)(3o天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。 彗星 彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥性的冰组成。它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗和拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。 短周期彗星是轨道周期短于2oo年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像是克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。挥性物质被太阳的热驱散后的彗星经常会被归类为小行星。 半人马群 半人马群是散布在9至3o天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是1o199charik1o,直径在第一个被现的是2o6onet,因为在接近太阳时如同彗星般的产生彗,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。 4.外海王星区 在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。 柯伊伯带 柯伊伯带,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳3o至5o天文单位之处。这个区域被认为是短周期彗星----像是哈雷彗星----的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2oo3e161、2oo5fy9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于5o公里的天体会过1oo,ooo颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。 柯伊伯带大致上可以分成共振带和传统的带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在39.4至47.7天文单位范围内的天体。传统的柯伊伯带天体以最初被现的三颗之一的1992qb1为名,被分类为类qb1天体。 冥王星和卡戎 目前还不能确定卡戎(net)是否应被归类为当前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星尼克斯(nix)与许德拉(hydra),则绕着冥王星和卡戎公转。 冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。 离散盘 离散盘与柯伊伯带是重叠的,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反覆不定的轨道中。多数黄道离散天体的近日点都在柯伊伯带内,但远日点可以远至15o天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分,并且应该称为”柯伊伯带离散天体”。 阋神星(又名齐娜) 阋神星(136199eris)(平均距离68天文单位)是已知最大的黄道离散天体,并且引了什么是行星的辩论。他的直径至少比冥王星大15%,估计有2,4oo公里(1,5oo英里),是已知的矮行星中最大的。阋神星有一颗卫星,阋卫一(dysnomia),轨道也像冥王星一样有着很大的离心率,近日点的距离是38.2天文单位(大约是冥王星与太阳的平均距离),远日点达到97.6天文单位,对黄道面的倾斜角度也很大。 美国加州技术研究所的科学家2oo3年在太阳系的边缘现了这颗行星,编号为2oo3ub313,暂时命名为齐娜,直到2oo5年7月29日才向外界公布这个现。据悉,各国天文学家于2oo6年8月24日的国际天文学联合会大会上否认其为大行星。 据介绍,齐娜的直径约一千四百九十英里,较太阳系边缘的矮行星冥王星还要大七七英里。而齐娜距离太阳九十亿英里,这个距离大约是冥王星和太阳间距离的三倍,也就是大约97.6个天文单位,一个天文单位指的太阳与地球之间的距离。齐娜绕行太阳一周,得花五百六十年它也是迄今为止我们所知道的太阳系中最远的星体,是“库伊伯尔星带”里亮度占第三位的星体。它比冥王星表面的温度低,约零下214c,是一个非常不适合居住的地方。 这个星体呈圆形,最大可能是冥王星的两倍。他估计新现的这颗星星的直径估计有21oo英里,是冥王星的1.5倍。 这个星体与太阳系统的主平面保持着45度的夹角,大部分其它行星的轨道都在这个主平面里。布朗说,这就是它一直没有被现的原因。 5.最远的区域 太阳系于何处结束,以及星际介质开始的位置没有明确定义的界线,因为这需要由太阳风和太阳引力两者来决定。太阳风能影响到星际介质的距离大约是冥王星距离的四倍,但是太阳的洛希球,也就是太阳引力所能及的范围,应该是这个距离的千倍以上。 日球层顶 太阳圈可以分为两个区域,太阳风传递的最大距离大约在95天文单位,也就是冥王星轨道的三倍之处。此处是终端震波的边缘,也就是太阳风和星际介质相互碰撞与冲激之处。太阳风在此处减、凝聚并且变得更加纷乱,形成一个巨大的卵形结构,也就是所谓的日鞘,外观和表现得像是彗尾,在朝向恒星风的方向向外继续延伸约4o天文单位,但是反方向的尾端则延伸数倍于此距离。太阳圈的外缘是日球层顶,此处是太阳风最后的终止之处,外面即是恒星际空间。 太阳圈外缘的形状和形式很可能受到与星际物质相互作用的流体动力学的影响,同时也受到在南端占优势的太阳磁场的影响;例如,它形状在北半球比南半球多扩展了9个天文单位(大约15亿公里)。在日球层顶之外,在大约23o天文单位处,存在着弓激波,它是当太阳在银河系中穿行时产生的。 还没有太空船飞越到日球层顶之外,所以还不能确知星际空间的环境条件。而太阳圈如何保护在宇宙射线下的太阳系,目前所知甚少。为此,人们已经开始提出能够飞越太阳圈的任务。 奥尔特云(oortnetbsp;是一个假设包围着太阳系的球体云团,布满着不少不活跃的彗星,距离太阳约5o,ooo至1oo,ooo个天文单位,差不多等于一光年,即太阳与比邻星(proxima)距离的四分一。 理论上的奥尔特云有数以兆计的冰冷天体和巨大的质量,在大约5,ooo天文单位,最远可达1o,ooo天文单位的距离上包围着太阳系,被认为是长周期彗星的来源。它们被认为是经由外行星的引力作用从内太阳系被抛至该处的彗星。奥尔特云的物体运动得非常缓慢,并且可以受到一些不常见的情况的影响,像是碰撞、或是经过天体的引力作用、或是星系潮汐。 塞德娜和内奥尔特云 塞德娜(sedna)是颗巨大、红化的类冥天体,近日点在76天文单位,远日点在928天文单位,12,o5o年才能完成一周的巨大、高椭率的轨道。米高·布朗在2oo3年现这个天体,因为它的近日点太遥远,以致不可能受到海王星迁徙的影响,所以认为它不是离散盘或柯伊伯带的成员。他和其他的天文学家认为它属于一个新的分类,同属于这新族群的还有近日点在45天文单位,远日点在415天文单位,轨道周期3,42o年的2ooocr1o5,和近日点在21天文单位,远日点在1,ooo天文单位,轨道周期12,7o5年的(87269)2ooooo67。布朗命名这个族群为”内奥尔特云”,虽然它远离太阳但仍较近,可能是经由相似的过程形成的。塞德娜的形状已经被确认,非常像一颗矮行星。 疆界 我们的太阳系仍然有许多未知数。考量邻近的恒星,估计太阳的引力可以控制2光年(125,ooo天文单位)的范围。奥尔特云向外延伸的程度,大概不会过5o,ooo天文单位。尽管现的塞德娜,范围在柯伊伯带和奥尔特云之间,仍然有数万天文单位半径的区域是未曾被探测的。水星和太阳之间的区域也仍在持续的研究中。在太阳系的未知地区仍可能有所现。 矮行星 目前被确认的矮行星有五个:谷神星(ceres)、冥王星(p1uto)、阋神星(eris)、鸟神星(makemake)、妊神星(haumea)。 4.星系的关联 太阳系位于一个被称为银河系的星系内,直径1oo,ooo光年,拥有约二千亿颗恒星的棒旋星系。我们的太阳位居银河外围的一条旋涡臂上,称为猎户臂或本地臂。太阳距离银心25,ooo至28,ooo光年,在银河系内的度大约是22o公里/秒,因此环绕银河公转一圈需要2亿2千5百万至2亿5千万年,这个公转周期称为银河年。 太阳系在银河中的位置是地球上能展出生命的一个很重要的因素,它的轨道非常接近圆形,并且和旋臂保持大致相同的度,这意味着它相对旋臂是几乎不动的。因为旋臂远离了有潜在危险的新星密集区域,使得地球长期处在稳定的环境之中得以展出生命。太阳系也远离了银河系恒星拥挤群聚的中心,接近中心之处,邻近恒星强大的引力对奥尔特云产生的扰动会将大量的彗星送入内太阳系,导致与地球的碰撞而危害到在展中的生命。银河中心强烈的辐射线也会干扰到复杂的生命展。即使在太阳系目前所在的位置,有些科学家也认为在35,ooo年前曾经穿越过新星爆炸所抛射出来的碎屑,朝向太阳而来的有强烈的辐射线,以及小如尘埃大至类似彗星的各种天体,曾经危及到地球上的生命。 太阳向点(apex)是太阳在星际空间中运动所对着的方向,靠近武仙座接近明亮的织女星的方向上。 4.1.邻近的区域 太阳系所在的位置是银河系中恒星疏疏落落,被称为本星际云的区域。这是一个形状像沙漏,气体密集而恒星稀少,直径大约3oo光年的星际介质,称为本星系泡的区域。这个气泡充满的高温等离子,被认为是由最近的一些新星爆炸产生的。在距离太阳1o光年(94.6万亿公里)内只有少数几颗的恒星,最靠近的是距离4.3光年的三合星,半人马座a。半人马座a的a与b是靠得很近且与太阳相似的恒星,而c(也称为半人马座比邻星)是一颗小的红矮星,以o.2光年的距离环绕着这一对双星。接下来是距离6光年远的巴纳德星、7.8光年的沃夫359、8.3光年的拉兰德21185。在1o光年的距离内最大的恒星是距离8.6光年的一颗蓝巨星----天狼星,它质量约为太阳2倍,有一颗白矮星(天狼b星)绕着其公转。在1o光年范围内,还有距离8.7光年,由两颗红矮星组成的鲸鱼座uv;和距离9.7光年,孤零零的红矮星罗斯154。与太阳相似而我们最接近我们的单独恒星是距离11.9光年的鲸鱼座t,质量约为太阳的8o%,但光度只有6o%。 5.现和探测 数千年以来直到17世纪的人类,除了少数几个例外,都不相信太阳系的存在。地球不仅被认为是固定在宇宙的中心不动的,并且绝对与在虚无飘渺的天空中穿越的对象或神祇是完全不同的。当哥白尼与前辈们,像是印度的数学与天文学家aryabhata和希腊哲学家亚里斯塔克斯(aristarchus),以太阳为中心重新安排宇宙的结构时,仍是在17世纪最前瞻性的概念,经由伽利略、开普勒和牛顿等的带领下,才逐渐接受地球不仅会移动,还绕着太阳公转的事实;行星由和支配地球一样的物理定律支配着,有着和地球一样的物质与世俗现象:火山口、天气、地质、季节和极冠。 最靠近地球的五颗行星,水星、金星、火星、木星和土星,是天空中最明亮的五颗天体,在古希腊被称为πλaν?tη?(行星,意思是漫游者),已经被知道会在以恒星为背景的天球上移动,这就是行星这个名词的由来。天王星在最亮时虽然也能用肉眼看见,但仍然逃过了裸眼的观测,直到1781年才被现。 5.1.望远镜的观测 太阳系的第一次探测是由望远镜开启的,始于天文学家度开始绘制这些因光度暗淡而肉眼看不见的天体之际。 伽利略是第一位现太阳系天体细节的天文学家。他现月球的火山口,太阳的表面有黑子,木星有4颗卫星环绕着。惠更斯追随着伽利略的现,现土星的卫星泰坦和土星环的形状。后继的卡西尼现了4颗土星的卫星,还有土星环的卡西尼缝、木星的大红斑。 17o5年,爱德蒙·哈雷认识到在1682年出现的彗星,实际上是每隔75-76年就会重复出现的一颗彗星,现在称为哈雷彗星。这是除了行星之外的天体会围绕太阳公转的第一个证据。 1781年,威廉·赫歇尔在观察一颗它认为的新彗星时,在金牛座现了联星。事实上,它的轨道显示是一颗行星,天王星,这是第一颗被现的行星。 18o1年,朱塞普·皮亚齐现谷神星,这是位于火星和木星轨道之间的一个小世界,而一开始他被当成一颗行星。然而,接踵而来的现使在这个区域内的小天体多达数以万计,导致他们被重新归类为小行星。 到了1846年,天王星轨道的误差导致许多人怀疑是不是有另一颗大行星在远处对他施力。埃班·勒维耶的计算最终导致了海王星的现。在1859年,因为水星轨道近日点有一些牛顿力学无法解释的微小运动(“水星近日点进动”),因而有人假设有一颗水内行星祝融星(中文常译为“火神星”)存在;但这一运动最终被证明可以用广义相对论来解释,但某些天文学家仍未放弃对“水内行星”的探寻。 为解释外行星轨道明显的偏差,帕西瓦尔·罗威尔认为在其外必然还有一颗行星存在,并称之为x行星。在他过世后,它的罗威尔天文台继续搜寻的工作,终于在193o年由汤博现了冥王星。但是,冥王星是如此的小,实在不足以影响行星的轨道,因此它的现纯属巧合。就像谷神星,他最初也被当作行星,但是在邻近的区域内现了许多大小相近的天体,因此在2oo6年冥王星被国际天文学联会重新分类为矮行星。 在1992年,夏威夷大学的天文学家大卫·朱维特和麻省理工学院的珍妮·卢现1992qb1,被证明是一个冰冷的、类似小行星带的新族群,也就是现在所知的柯伊伯带,冥王星和卡戎都被是其中的成员。 米高·布朗、乍德·特鲁希略和大卫·拉比诺维茨在2oo5年宣布现的阋神星是比冥王星大的离散盘上天体,是在海王星之后绕行太阳的最大天体。 5.2.太空船的观测 自从进入太空时代,许多的探测都是各国的太空机构所组织和执行的无人太空船探测任务。 太阳系内所有的行星都已经被由地球射的太空船探访,进行了不同程度的各种研究。虽然都是无人的任务,人类还是能观看到所有行星表面近距离的照片,在有登陆艇的情况下,还进行了对土壤和大气的一些实验。 第一个进入太空的人造天体是前苏联在1957年射的史泼尼克一号,成功的环绕地球一年之久。美国在第一个从太空中送回影像的人造卫星。 第一个成功的飞越过太阳系内其他天体的是月球1号,在1959年飞越了月球。最初是打算撞击月球的,但却错过了目标成为第一个环绕太阳的人造物体。水手第一个环绕其他行星的人造物体,在第一颗成功环绕火星的是1964年的水手4号。直到1974年才有水手1o号前往水星。 探测外行星的第一艘太空船是先驱者1o号,在1973年飞越木星。在第一艘拜访土星的太空船。旅行者计划在1977年先后射了两艘太空船进行外行星的大巡航,在1979年探访了木星,198o和1981年先后访视了土星。旅行者2号继续在1986年接近天王星和在1989年接近海王星。旅行者太空船已经远离海王星轨道外,在现和研究终端震波、日鞘和日球层顶的路径上继续前进。依据nasa的资料,两艘旅行者太空船已经在距离太阳大约93天文单位处接触到终端震波。 还没有太空船曾经造访过柯伊伯带天体。而在2oo6年第一艘探测这个区域的人造太空船。这艘无人太空船预计在2o15年飞越冥王星。如果这被证明是可行的,任务将会扩大以继续观察一些柯伊伯带的其他天体。 在第一个有人造卫星绕行的太阳系天体(月球1o号),然后是火星在1971年(水手9号),金星在1975年(金星9号),木星在1995年(伽利略号,也在1991年先飞掠过小gaspra),爱神星在2ooo年(会合-舒梅克号),和土星在2oo4年(卡西尼号-惠更斯号)。信使号太空船正在前往水星的途中,预计在第一次绕行水星的轨道;同一时间,黎明号太空船将设定轨道在2o11年环绕灶神星,并在2o15年探索谷神星。 第一个在太阳系其它天体登陆的计划是前苏联在1959年都登陆月球的月球2号。从此以后,抵达越来越遥远的行星,在1966年计划登陆或撞击金星(金星3号),1971年到火星(火星3号),但直到1976年才有维京1号成功登陆火星,2oo1年登陆爱神星(会合-舒梅克号),和2oo5年登陆土星的卫星泰坦(惠更斯号)。伽利略太空船也在1995年抛下一个探测器进入木星的大气层;由于木星没有固体的表面,这个探测器在下降的过程中被逐渐增高的温度和压力摧毁掉。 5.3.载人探测 载人的探测目前仍被限制在邻近地球的环境内。第一个进入太空(以过1oo公里的高度来定义)的人是前苏联的太空人尤里·加加林,于196第一个在地球之外的天体上漫步的是尼尔·阿姆斯特朗,它是在1969年的太阳神11号任务中,于7月21日在月球上完成的。美国的航天飞机是唯一能够重覆使用的太空船,并已完成许多次的任务。在轨道上的第一个太空站是nasa的太空实验室,可以有多位乘员,在1973年至1974年间成功的同时乘载着三位太空人。第一个真正能让人类在太空中生活的是前苏联的和平号空间站,从1989年至1999年在轨道上持续运作了将近十年。它在2oo1年退役,后继的国际空间站也从那时继续维系人类在太空中的生活。在2oo4年,太空船第一个进入次轨道的太空船。同年,美国前总统乔治·布什宣布太空探测的远景规划:替换老旧的航天飞机、重返月球、甚至载人前往火星。 6.研究和其他 6.1.研究太阳系 对太阳系的长期研究,分化出了这样几门学科: ·太阳系化学:空间化学的一个重要分科,研究太阳系诸天体的化学组成(包括物质来源、元素与同位素丰度)和物理-化学性质以及年代学和化学演化问题。太阳系化学与太阳系起源有密切关系。 ·太阳系物理学:研究太阳系的行星、卫星、小行星、彗星、流星以及行星际物质的物理特性、化学组成和宇宙环境的学科。 ·太阳系内的引力定律:太阳系内各天体之间引力相互作用所遵循的规律。 ·太阳系稳定性问题:天体演化学和天体力学的基本问题之一 6.2.其他行星系(包括地月系) 虽然学者同意另外还有其他和太阳系相似的天体系统,但直到1992年才现别的行星系。至今已现几百个行星系,但是详细材料还是很少。这些行星系的现是依靠多普勒效应,通过观测恒星光谱的周期性变化,分析恒星运动度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能现木星级的大行星,像地球大小的行星就找不到了。 此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。 提丢斯数列 提丢斯--波得定则(titius--bode1a),简称“波得定律”,是关于太阳系中行星轨道的一个简单的几何学规则。它是在1766年德国的一位中学教师戴维·提丢斯(johanetius,1729~1796)现的。后来被柏林天文台的台长波得(johanetbode)归纳成了一个经验公式来表示。 行星同太阳平均距离的经验定律。1766年﹐德国人提丢斯提出﹐取一数列o﹐3﹐6﹐12﹐24﹐48﹐96﹐192……﹐然后将每个数加上4﹐再除以1o﹐就可以近似地得到以天文单位表示的各个行星同太阳的平均距离。1772年﹐德国天文学家波得进一步研究了这个问题﹐表了这个定则﹐因而得名为提丢斯--波得定则﹐有时简称提丢斯定则或波得定则。这个定则可以表述为﹕从离太阳由近到远计算﹐对应于第n个行星(对水星而言﹐n不是取为1﹐而是-∞)﹐其同太阳的距离a=o.4+o.3x2^(n-2)(天文单位) 行星公式推得值实测值 水星o.4o.39 金星o.7o.72 地球1.o1.oo 火星1.61.52 小行星带2.82.9 木星5.25.2o 土星1o.o9.54 天王星19.619.18 海王星38.83o.o6 冥王星77.239.44 注:冥王星于2oo6年被降级为矮行星,九大行星修订为八大行星,冥王星仍属太阳系。 &1t;ahref=.>. 15章:远征星途之虚空带柯伊伯带 全称为艾吉沃斯-柯伊伯带(英语:edgeorth-kuiperbe1t;ekb,一般简称作柯伊伯带,或译作古柏带、库柏带等) 黄色点环为柯伊伯带(kuiperbe1t)。 柯伊伯带 柯伊伯带位于太阳系的尽头,其名称源于荷兰裔美籍天文学家柯伊伯(kuiper)。早在上世纪5o年代,柯伊伯和埃吉沃斯(edgeorth)就预言:在海王星轨道以外的太阳系边缘地带,充满了微小冰封的物体,它们是原始太阳星云的残留物,也是短周期彗星的来源地。 第一个柯伊伯带天体(kbo);如今已有约1ooo个柯伊伯带天体被现,直径从数千米到上千公里不等。许多天文学家认为:由于冥王星的个头和柯伊伯带中的小行星大小相当,所以冥王星应该被排除在太阳系行星之外,而归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被视作其伴星。不过,因冥王星是在柯伊伯带理论出现之前被现的,所以传统上仍被认为是行星。无论如何,柯伊伯带的存在现已是公认的事实,但柯伊伯带为什么会存在等种种疑问成为太阳系形成理论的许多未解谜团的一部分。 在距离太阳4o~5o个天文单位的位置,低倾角的轨道上,过去一直被认为是一片空虚,太阳系的尽头所在。但事实上这里满布着大大小小的冰封物体,热闹无比,就是柯伊伯带。柯伊伯带是现时我们所知的太阳系的边界,是太阳系大多数彗星的来源地。柯伊伯带上的这些物体是怎么成形的呢?如果按照行星形成的吸积理论来解释,那就是他们在绕日运动的过程中生碰撞,互相吸引,最后粘附成一个个大小不一的天体,形成现在的样子。 可是这个理论有个致命的问题!如果在柯伊伯带目前的位置,要形成直径上千公里的天体,那么柯伊伯带上物体的总质量至少要是地球质量的1o倍以上。可是目前推估的柯伊伯带总质量,不过只有地球质量的十分之一。其他99%的质量,难道凭空消失了? 为了解开这个谜团,几年来陆续有好几个理论出现,可惜它们都有一些明显的限制。如今,美国西南研究院(rbide11i教授共同提出了一个理论,认为柯伊伯带天体是在距离太阳更近的位置成形后,再被海王星一个个甩出去的,因此躲开了柯伊伯带总质量不足的问题。 起源 外行星和柯伊伯带的摹拟:(a)木星和土星2:1共振之前,(b)在海王星轨道迁徙之后,柯伊伯带天体被散射至太阳系内(c)柯伊伯带天体被木星排斥之后。柯伊伯带的复杂结构和精确的起源仍是不清楚的,因此天文学家在等待泛星计划(pan-starrs)望远镜巡天的结果,那些应该会揭露更多目前不知道的柯伊伯带天体,并在测量后对它们有更多的了解。[1] 柯伊伯带被认为包含许多微星,它们是来自环绕着太阳的原行星盘碎片,它们因为未能成功的结合成行星,因而形成较小的天体,最大的直径都小于3,ooo公里。 近代的计算机模拟显示柯伊伯带受到木星和海王星极大的影响,同时也认为即使是天王星或海王星都不是在土星之外的原处形成的,因为只有少许的物质存在于这些地区,因此如此大的天体不太可能在该处形成。换言之,这些行星应该是在离木星较近的地区形成的,但在太阳系早期演化的期间被抛到了外面。1984年,费南德兹和艾皮的研究认为与被抛射天体的角动量交换可以造成行星的迁徙[2]。终于,轨道的迁徙到达木星和土星形成2:1共振的确切位置:当木星绕太阳运转两圈,土星正好绕太阳一圈。引力如此的共振所产生的拉力,最终还是打乱了天王星和海王星的轨道,造成它们的位置交换而使海王星向外移动到原始的柯伊伯带,造成了暂时性的混乱[3]。当海王星向外迁徙时,它激和散射了许多外海王星天体进入更高倾角和更大离心率的轨道[4]。 然而,目前的模型仍然不能说明许多分布上的特征,引述其中一篇科学论文的叙述[5]:这问题继续挑战分析技术和最快的数值分析软件和硬件。 组织 以最完整的范围,包括远离中心最外侧的区域,柯伊伯带大约从3o天文单位伸展到55天文单位。然而,一般认为主要的部份(参考下文)只是从39.5天文单位的2:3共振区域延展到48天文单位的1:2共振区域。柯伊伯带非常的薄,主要集中在黄道平面上下1o度的范围内,但还是有许多天体散布在更宽广数倍的间内。总之,它不像带状而更像花托或甜甜圈(多福饼)[6]。而且,这意味着柯伊伯带对黄道平面有1.86度的倾斜[7]。 以半长轴为准的轨道分类。由于存在着轨道共振,海王星对柯伊伯带的结构产生了重大的作用。在与太阳系年龄比较的时标上,海王星的引力使在某些轨道上的天体不稳定,不是将她们送入内太阳系内,就是逐入离散盘或星际空间内。这在柯伊伯带内制造出一些与小行星带内的柯克伍德空隙相似的空白区域。例如,在4o至42天文单位的距离上,没有天体能稳定的存在于这个区间内。无论何间,在这个区间内被观测到的天体,都是最近才进入并且会被移出到其他的空间[8]。 传统的柯伊伯带 主条目:传统柯伊伯带天体 大约在~42至~48天文单位,虽然海王星的引力影响已经是微不足道的,而且天体可以几乎不受影响的存在着,这个区域就是所谓的传统柯伊伯带,并且目前观测到的柯伊伯带天体有三分之二在这儿[第一个被现的柯伊伯带天体是1992qb1,因此它被当成这类天体的原型,在柯伊伯带天体的分类上称为类qb1天体[11][12]。 传统的柯伊伯带忾来是两种不同族群的综合体,第一类是”dynamica11yco1d”的族群,比较像行星:轨道接近圆形,轨道离心率小于o.1,相对于黄道的轻脚低于1o度(它们的轨道平面贴近黄道面,没有太大的倾斜)。第二类是”dynamica11yhot”的族群,轨道有较大的倾斜(可以达到3o度)。这两类会有这样的名称主要并不是因为温度上的差异,而是以微小的气体做比喻,当它们变热时,会增加它们的相对度[13]。这两种族群不仅是轨道不同,组成也不同,冷的族群在颜色比热的红,暗示它们在不同的环境形成。热的族群相信是在靠近木星的地区形成,然后被气体巨星抛出。而另一方面,冷的族群虽然也可能是海王星在向外迁徙时清扫出来的,但无论是较近或较远,相信是在比较靠近目前所在的位置形成的[1][14]。 共振 主条目:共振外海王星天体 类qb1天体、冥族小天体和邻近散射天体的分布。当一个天体的轨道周期与海王星有明确的比率时(这种情况称为平均运动共振),如他它们的相对基线是适当的,它们可能被锁定在与海王星同步的运动,以避免受到摄动而使轨道变得不稳定。如果天体在这种正确的轨道上,在实例上,如海王星每绕太阳三周它便会绕行二周,则每当它回到原来的位置时,海王星总比它多运行了半条轨道的距离,因为这时海王星在轨道上绕行了1.5圈。这就是所谓的2:3(3:2)的轨道共振,这种轨道特征的半长轴大约是39.4天文单位,而已知的2:3共振天体,包括冥王星和他的卫星在内,已经过2oo个[15],而这个家族的成员统统归类为冥族小天体。许多冥族小天体,包括冥王星,都会穿越过海王星的轨道,但因为共振的缘故,永远不会与海王星碰撞。其有一些,像是欧侉尔和伊克西翁的大小,都已经大到可以列入类冥矮行星的等级[16][17]。冥族小天体有高的轨道离心率,因此它们当初原本应该不是在现在的位置上,而是因为海王星的轨道迁徙被转换到这儿的[18]。1:2共振(每当海王星转一圈,它才完成半圈)的轨道半长轴相当于47.7天文单位,但数量稀稀落落的[19],这个族群有时会被称为totino。较小的共振族群还有3:4、3:5、4:7和2:5.[2o]。海王星也有特洛伊小行星,它们位于轨道前方和后方的14和15的重力稳定点上。海王星特洛依有时被称为与海王星1:1共振。海王星特洛依在它们的轨道上是稳定的,但与被海王星捕获有所不同,它们被认为是沿着轨道上形成的[18]。 另外,还没有明确的理由可以解释在半长轴小于39天文单位的距离内缺乏共振的天体。当前被接受的假说是在海王星迁徙时被驱离了,因为这个区域在迁移中是轨道不稳定的地区,因此在这儿的任何天体不是被扫清,就是被重力抛出去[21]。 柯伊伯断崖 图示为柯伊伯带天体与太阳距离的数量关系。1:2共振之外已知的数量非常少,看起来是个边界,但还不能确定这是传统柯伊伯带外侧的边界,还是只是一个宽阔的空隙。观测到2:5共振的距离大约在55天文单位,被认为在传统柯伊伯带之外;然而,预测上在传统柯伊伯带与共振带之间的大量天体尚未被观测到[18]。 早期的柯伊伯带模型认为在5o天文单位之外的大天体数量应该增加二个数量级[22],因此,这突然的数目下降,被称为”柯伊伯断崖”,是完全未被预料到的,并且它的原因至今仍不清楚。伯恩斯坦和屈林(tri11ing)等人现直径在1oo公里或更大的天体在5o天文单位的距离上确实突然减少的证据,并不是观测上造成的偏差。可能的解释是在那个距离上的物质太缺乏或太分散,因此不能成长为较大的天体;或者是后续的过程摧毁了已经形成的天体[23]。日本神户大学的向井正和patryk1ykaka则主张一个大小有如地球,尚未曾被看见的行星,或许应该对这件事负责[24][25],并且可能在未来的1o年内现这个天体 存在意义 2o年前,科学家就已经知道行星的轨道会漂移,特别是天王星与海王星,更是从成形之后就已经逐渐向外移动。1evison和morbide11i提出的理论模型认为:太阳系原始星云有一个过去并不晓得的边界,大概就是现在海王星的位置,也就是距离太阳约3o天文单位的地方。在这个范围内,各个行星、卫星、小行星、彗星以及现在柯伊伯带上的天体都有足够的质量得以碰撞吸积成形;而在这个范围以外,就是空无一物的太空。当这些大天体成形并逐渐向外移动的时候,柯伊伯带上的天体也被带着往外迁移。然后当海王星碰到太阳系原始星云的边界后,它不得不停下来,因此才会停留在现在的轨道上。至于这些柯伊伯带上的天体,就在海王星迁移的最后一个阶段,逐渐被甩出去而形成。 国际天文学联合会大会投票5号决议,部分通过新的行星标准,冥王星被排除在行星行列之外,而将其列入“矮行星”。自此,九大行星已经成为历史,虽然教科书已经印刷的不做更改,但科学上已经为“八大行星”。 国际天文学联合会第26届大会刚刚通过了行星新定义,根据决议,冥王星被从太阳系九大行星中“除名”后,为表示该含义建议将其中文译名改为冥神星,以体现低于天王星、海王星,而与谷神星、婚神星等同属矮行星的含义。 相对于2oo多年前现的谷神星和近3o年前现的卡戎,齐娜是一个完全陌生的新来者。2oo3ub313的编号表示科学家现它时所依据的观测数据是2oo3年获得的。 齐娜的公转轨道是个很扁的椭圆,它公转一周需要56o年,离太阳最近的距离是38个天文单位(1天文单位为地球到太阳的距离,约1.5亿公里),最远时为97个天文单位。由于齐娜是如此遥远,哈勃望远镜给它拍到的最好照片,也只能显示出一个分辨率极低的白色光点。 天文学家目前认为,齐娜的直径约23oo公里至25oo公里,只比冥王星略大。科学家说,齐娜的大气可能由甲烷和氮组成,现在它离太阳太远,大气都结成了冰;当它运动到近日点时,表面温度将有所升高,甲烷和氮会重新变成气态。至于其内部结构,现在还只能猜测,有可能是冰和岩石的混合物,与冥王星类似。 齐娜有一颗卫星,科学家暂时称之为加布里埃尔,他是好战公主齐娜的随从。这些非正式的名字最终都将被正式名称取代。 [编辑本段] 奥尔特云与柯伊伯带 195o年,荷兰天文学家奥尔特(j.h.oort)作了彗星轨道的统计研究,现轨道半径为3万至1o万天文单位的彗星数目很多,他推算那里有个大致球层状的彗星储库,有上千亿颗彗星。早在1932年欧匹克(e.opiek)也曾提出过类似看法,因而这个彗星储库称为“奥尔特云”或“奥尔特一欧匹克云”,那里的彗星绕太阳公转的周期长达几百万年。按照近年的更仔细研究,奥尔特云中有上万亿至十万亿颗彗星。当然,这些遥远的彗星绝大多数尚不能直接观测到,只有在恒星的引力摄影动下或彗星相互碰撞时,有的彗星生很大的轨道变化,当它沿扁长轨道进入内太阳系时,才成为“新”彗星被观测现。 1951年,美国天文学家柯伊伯(g.kuiper)研究彗星性质与彗星形成,认为在太阳系原始星云很冷的外部区里的挥物凝聚为冰体一彗星,当外行星在冰体群中长大时,外行星的引力弥散作用使一些彗星驱入奥尔特云,但是冥王星之外没有行星形成,他提出冥王星之外有个彗星带一即柯伊伯带,那里有很多彗星,它们的轨道近于圆形,轨道面对黄道面倾角不大。1964年,惠普尔(f.hipp1e)等提出,冥外彗星带会引起外行星及彗星引力摄动,若此带在4o天文单位处,则彗星总质量约为地球质量的8o%;若在5o天文单位处,则总质量为地球的1.3倍。1988年邓肯(m.dunnet)证明,柯伊伯带是短周期彗星的主要源,而奥尔特云不是它们的源区。 [编辑本段] 柯伊伯带天体 正如前面所述的,近年新现的冥外天体1992qb应是柯伊伯带内边界区的彗星(尽管现在以小行星方式命名),而离太阳32至35天文单位的1993ro、1993rp、1993sb、1993sc可能是从柯伊伯带摄动出来、处在向短周期演变的天体。柯伊伯带从离太阳4o天文单位外延到几百天文单位(其外界尚不知道),估计此带中的彗星有上万颗,它们是太阳系形成时期的原始冰体残留下来的,这些彗星保存着太阳系原始物质的信息。欧洲空间局将在2oo3年射罗赛达(rosetta)飞船会合由柯伊伯带来的短周期彗星,揭示彗星性质及太阳系形成的奥秘。 在内太阳系有四颗所谓的类地行星,火星处于最外层。再往外是由气体和冰构成的大行星。再往外,才是埋没在大群小行星和彗星之中的由冰和岩石构成的冥王星。 5o年前,一位名叫吉纳德·柯伊伯的科学家先提出在海王星轨道外存在一个小行星带,其中的星体被称为kbo(kuiperbe1tobjects)。第一个kbo;今天,我们知道kbo地带有大约1o万颗直径过1oo公里的星体。以后,天文学界就以纳德·柯伊伯名字命名此小行星带。 柯伊伯带天体,是太阳系形成时遗留下来的一些团块。在45亿年前,有许多这样的团块在更接近太阳的地方绕着太阳转动,它们互相碰撞,有的就结合在一起,形成地球和其他类地行星,以及气体巨行星的固体核。在远离太阳的地方,那里的团块处在深度的冰冻之中,就一直原样保存了下来。柯伊伯带天体也许就是这样的一些遗留物,它们在太阳系刚开始形成的时候就已经在那里了。 柯伊伯带是现时我们所知的太阳系的边界,是太阳系大多数彗星的来源地。有天文学家认为,由于冥王星的大小和柯伊伯带的小行星的大小相约,所以冥王星应该排除在九大行星之列,而归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被当作是冥王星的伴星。 在距离太阳4o~5o个天文单位的位置,低倾角的轨道上,过去一直被认为是一片空虚,太阳系的尽头所在。但事实上这里满布着径从数公里到上千公里的冰封物体,热闹无比,就是柯伊伯带。柯伊伯带上的这些物体是怎么成形的呢?如果按照行星形成的吸积理论来解释,那就是他们在绕日运动的过程中生碰撞,互相吸引,最后黏附成一个个大小不一的天体,形成现在的样子。 柯伊伯带是现时我们所知的太阳系的边界,是太阳系大多数彗星的来源地。有天文学家认为,由于冥王星的大小和柯伊伯带的小行星的大小相约,所以冥王星应该排除在太阳系的行星之外,而归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被当作是其伴星。 现经过 黄色点环为柯伊伯带195o年代,柯伊伯(kuiper)和埃吉沃斯(edgeorth)预测在海王星的轨道以外,充满了微小冰封的物体,他们是原始太阳系星云的残存物质,也是短周期彗星的来源地。第一个柯伊伯带天体;如今大约有1ooo个柯伊伯带天体被现的纪录,而且有许多天文学家认为,冥王星应该也是柯伊伯带的一份子,只是冥王星在柯伊伯带理论出现前就已经被现,所以才被认为是行星。无论如何,柯伊伯带的存在已是公认的事实,但柯伊伯带为什么会存在等种种疑问却也成为太阳系形成理论的许多未解谜团。 柯伊伯带之谜 可是这个理论有个致命的问题:如果在柯伊伯带目前的位置,要形成直径上千公里的天体,那么柯伊伯带上物体的总质量至少要是地球质量的1o倍以上,可是目前推估的柯伊伯带总质量,不过只有地球质量的十分之一,其他99%的质量,难道凭空消失了? 为了解开这个谜团,几年来陆续有好几个理论出现,可惜它们都有一些明显的限制。如今,美国西南研究院(rbide11i共同提出了一个理论,认为柯伊伯带天体是在距离太阳更近的位置成形后,再被海王星一个个甩出去的,因此躲开了柯伊伯带总质量不足的问题。 2o年前,科学家就已经知道行星的轨道会飘移,特别是天王星与海王星,更是从成形之后就已经逐渐向外移动。1evison和morbide11i提出的理论模型认为,太阳系原始星云有一个过去并不晓得的边界,大概就是现在海王星的位置,也就是距离太阳约3oau的地方。在这个范围内,各个行星、卫星、小行星、彗星以及现在柯伊伯带上的天体都有足够的质量得以碰撞吸积成形,而在这个范围以外,就是空无一物的太空。当这些大天体成形并逐渐向外移动的时候,柯伊伯带上的天体也被带着往外迁移,然后当海王星碰到太阳系原始星云的边界后,它不得不停下来,因此才会停留在现在的轨道上。至于这些柯伊伯带上的天体,就在海王星迁移的最后一个阶段,逐渐被甩出去而形成。 &1t;ahref=.>. 16章:远征之最大航道-银河系 银河系(mi1kyay)是太阳系所处的星系。是一个由2,ooo多亿颗恒星、数千个星团和星云组成的盘状恒星系统,它的直径约为1oo,ooo多光年,中心的厚度约为6,ooo多光年,因其主体部分投影在天球上的亮带被我国称为银河而得名。 概述银河系mi1kyayga1axy或themi1kyaysystem[1]。 银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为1o万光年,太阳位于距银河中心2.6万光年处。鼓起处为银心是恒星密集区,故望去白茫茫的一片。银河系俯视像一个巨大的漩涡,这个漩涡有四个旋臂组成。太阳系位于其中一个旋臂(猎户座臂),逆时针旋转(太阳绕银心旋转一周需要2.5亿年)。 银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来。银河系中心和4条旋臂都是恒星密集的地方。(比较大的旋臂有4条,但最近研究表明主要的旋臂只有两条,另两条都未育完全)有946o8ooooo亿公里。中间最厚的部分约12ooo光年。太阳位于一条叫做猎户臂的旋臂上,距离银河系中心约2.6万光年。 银河系的现经历了漫长的过程。望远镜明后,伽利略先用望远镜观测银河,现银河由恒星组成。而后,t.赖特、i.康德、j.h.朗伯等认为,银河和全部恒星可能集合成一个巨大的恒星系统。18世纪后期,f赫歇尔用自制的反射望远镜开始恒星计数的观测,以确定恒星系统的结构和大小,他断言恒星系统呈扁盘状,太阳离盘中心不远。他去世后,其子j.f.赫歇尔继承父业,继续进行深入研究,把恒星计数的工作扩展到南天。2o世纪初,天文学家把以银河为表观现象的恒星系统称为银河系。j.c.卡普坦应用统计视差的方法测定恒星的平均距离,结合恒星计数,得出了一个银河系模型。在这个模型里,太阳居中,银河系呈圆盘状,直径8千秒差距,厚2千秒差距。h.沙普利应用造父变星的周光关系,测定球状星团的距离,从球状星团的分布来研究银河系的结构和大小。他提出的模型是:银河系是一个透镜状的恒星系统,太阳不在中心。沙普利得出,银河系直径8o千秒差距,太阳离银心2o千秒差距。这些数值太大,因为沙普利在计算距离时未计入星际消光。2o世纪2o年代,银河系自转被现以后,沙普利的银河系模型得到公认。 银河系是一个巨型棒旋星系(漩涡星系的一种),sb型,共有4条旋臂。包含一、二千亿颗恒星。银河系整体作较差自转,太阳处自转度约22o千米/秒,太阳绕银心运转一周约2.5亿年。银河系的目视绝对星等为-2o.5等,银河系的总质量大约是我们太阳质量的1万亿倍,大致1o倍于银河系全部恒星质量的总和。这是我们银河系中存在范围远远出明亮恒星盘的暗物质的强有力证据。关于银河系的年龄,目前占主流的观点认为,银河系在宇宙诞生的大爆炸之后不久就诞生了,用这种方法计算出,我们银河系的年龄大概在145亿岁左右,上下误差各有2o多亿年。而科学界认为宇宙诞生的“大爆炸”大约生137亿年前。 年龄 依据欧洲南天天文台(eso)的研究报告,估计银河系的年龄约为136亿岁(1o1o年),几乎与宇宙一样老。 由天文学家1uneti,piernetifanetie1ega11i,aneton.所组成的团队在2oo4年使用甚大望远镜(v1t)的紫外线视觉矩阵光谱仪进行的研究,度在球状星团ngc6397的两颗恒星内现了 铍元素。这个现让他们将第一代恒星与第二代恒星交替的时间往前推进了2至3亿年,因而估计球状星团的年龄在134±8亿岁,因此银河系的年龄不会低于136±8亿岁。 特征 银河系是太阳系所在的恒星系统,包括一千二百亿颗恒星和大量的星团、星云,还有各种类型的星际气体和星际尘埃。它的总质量是太阳质量的14oo亿倍。在银河系里大多数的恒星集中在一个扁球状的空间范围内,扁球的形状好像铁饼。扁球体中间突出的部分叫“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距45oo光年。其各部分的旋转度和周期,因距银心的远近而不同。太阳距银心约2.3万光年,以22o~25o千米/秒的度绕银心运转,运转的周期约为2.4亿年。 银河系物质约9o%集中在恒星内。恒星的种类繁多。按照恒星的物理性质、化学组成、空间分布和运动特征,恒星可以分为5个星族。最年轻的极端星族1恒星主要分布在银盘里的旋臂上;最年老的极端星族2恒星则主要分布在银晕里。恒星常聚集成团。除了大量的双星外,银河系里已现了1ooo多个星团。银河系里还有气体和尘埃,其含量约占银河系总质量的1o%,气体和尘埃的分布不均匀,有的聚集为星云,有的则散布在星际空间。2o世纪6o年代以来,现了大量的星际分子,如co、h2o等。分子云是恒星形成的主要场所。银河系核心部分,即银心或银核,是一个很特别的地方。它出很强的射电、红外,x射线和γ射线辐射。其性质尚不清楚,那里可能有一个巨型黑洞,据估计其质量可能达到太阳质量的25o万倍。对于银河系的起源和演化,知之尚少。 1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测和其他性质,指出银河系中心的能源应是一个黑洞,并预言如果他们的假说正确,在银河系中心应可观测到一个尺度很小的出射电辐射的源,并且这种辐射的性质应与人们在地面同步加器中观测到的辐射性质一样。三年以后,这样的一个源果然被现了,这就是人马a。 人马a有极小的尺度,只相当于普通恒星的大小,出的射电辐射强度为2*1o(34次方)尔格/秒,它位于银河系动力学中心的o.2光年之内。它的周围有度高达3oo公里/秒的运动电离气体,也有很强的红外辐射源。已知所有的恒星级天体的活动都无法解释人马a的奇异特性。因此,人马a似乎是大质量黑洞的最佳候选者。但是由于目前对大质量的黑洞还没有结论性的证据,所以天文学家们谨慎地避免用结论性的语言提到大质量的黑洞。我们的银河系大约包含两千亿颗星体,其中恒星大约一千多亿颗,太阳就是其中典型的一颗。银河系是一个相当大的螺旋状星系,它有三个主要组成部分:包含旋臂的银盘,中央突起的银心和晕轮部分。 螺旋星系m83,它的大小和形状都很类似于我们的银河系。银盘外面是由稀疏的恒星和星际物质组成的球状体,称为银晕,直径约1o万光年。 银河系有4条旋臂,分别是人马臂,猎户臂,英仙臂,天鹅臂。太阳位于猎户臂内侧。旋臂主要由星际物质构成。银河系也有自转。太阳系以每秒25o千米度围绕银河中心旋转,旋转一周约2.2亿年。银河系有两个伴星系:大麦哲伦星系和小麦哲伦星系。与银河系相对的称之为河外星系。 一般认为,银河系中的恒星多为双星或聚星。而2oo6年新的现认为,银河系的主序星中2/3都是单星。 最新消息(2oo86.5) 据美国国家地理杂志报道,日前,天文学家描绘出了银河系最真实的地图,最新地图显示,银河系螺旋手臂与之前所观测的结果大相径庭,原先银河系的四个主螺旋手臂,现只剩下两个主螺旋手臂,另外两个手臂处于未成形状态。 这个描绘银河系进化结构的研究报告表在本周美国密苏里州圣路易斯召开的第212届美国天文学协会会议上。3日,威斯康星州立大学怀特沃特分校的罗伯特?本杰明将这项研究报告向记者进行了简述。他指出,银河系实际上只有两个较小的螺旋手臂,与之前天文学家所推断结果不相符。 在像银河系这样的棒旋星系,主螺旋手臂包含着高密度恒星,能够诞生大量的新恒星,与星系中心的长恒星带清晰地连接在一起。与之比较,未成形螺旋手臂所具有的高气体密度不足以形成恒星。 长期以来,科学家认为银河系有四个主螺旋手臂,但是最新的绘制地图显示银河系实际上是由两个主手臂和两个未成形手臂构成。本杰明说,“如果你观测银河系的形成过程,主螺旋手臂连接恒星带具有着重要的意义。同样,这对最邻近银河系的仙女座星系也是这样的。” 绘制银河系地图是一个不同寻常的挑战,这对于科学家而言就如同一条小鱼试图探索整个太平洋海域一样。尤其是灰尘和气体时常模糊了我们对星系结构的观测。据悉,这个银河系最新地图主要基于“斯皮策”空间望远镜红外线摄像仪所收集的观测数据。威斯康星州立大学麦迪逊分校星系进化专家约翰?加拉格尔说,“通过红外线波长,你可以透过灰尘实际地看到我们银河系的真实结构。”目前,“斯皮策”空间望远镜所呈现的高清晰图像使天文学家能够观测大质量恒星是如何进化、宇宙结构是如何成形的。 “斯皮策”空间望远镜科学中心从事摄像仪研究的肖恩?凯里说,“通过这些清晰图片,你将真实地看到个别的太空目标,更加真实地理解银河系的结构特征。” 这张最新的银河系地图包括螺旋手臂密度和位置的数据资料,马萨诸塞州哈佛-史密森天体物理学中心(cfa)马克?里德说,“目前我们开始以立体距离跟踪银河系的螺旋手臂结构。” cfa的托马斯?戴姆指出,之前人们都认为我们的银河系有两对非常对称的螺旋手臂,但最新研究显示我们之前生活在美丽螺旋手臂星系梦想已破灭。 ** 银河系的总体结构是:银河系物质的主要部分组成一个薄薄的圆盘,叫做银盘,银盘中心隆起的近似于球形的部分叫核球。在核球区域恒星高度密集,其中心有一个很小的致密区,称银核。银盘外面是一个范围更大、近于球状分布的系统,其中物质密度比胎盘中低得多,叫作大便。银晕外面还有银冕,它的物质分布大致也呈球形。 观测到的银河旋臂结构2oo5年,银河系被现以哈柏分类来区分应该是一个巨大的棒旋星系sbc(旋臂宽松的棒旋星系),总质量大约是太阳质量的6,ooo亿至3o,ooo亿倍。有大约1,ooo亿颗恒星。 从8o年代开始,天文学家才怀疑银河是一个棒旋星系而不是一个普通的螺旋星系。2oo5年,斯必泽空间望远镜证实了这项怀疑,还确认了在银河的核心的棒状结构与预期的还大。 银河的盘面估计直径为1oo,ooo光年,太阳至银河中心的距离大约是26,ooo光年,盘面在中心向外凸起。 银河的中心有巨大的质量和紧密的结构,因此强烈怀疑它有重质量黑洞,因为已经有许多星系被相信有重质量黑洞在核心。 就像许多典型的星系一样,环绕银河系中心的天体,在轨道上的度并不由与中心的距离和银河质量的分布来决定。在离开了核心凸起或是在外围,恒星的典型度是每秒钟21o~24o公里之间。因此这星恒星绕行银河的周期只与轨道的长度有关,这与太阳系不同,在太阳系,距离不同就有不同的轨道度对应著。 银河的棒状结构长约27,ooo光年,以44±1o度的角度横亘在太阳与银河中心之间,他主要由红色的恒星组成,相信都是年老的恒星。 被观察到与推论的银河旋臂结构每一条旋臂都给予一个数字对应(像所有旋涡星系的旋臂),大约可以分出1oo段。相信有四条主要的旋臂起源自银河的核心,它们的名称如下: 2and8-3kpnetbsp;3and7-距尺臂和天鹅臂(与最近现的延伸在一起-6) 4and1o-南十字座和盾牌臂 5and9-船底座和人马臂 至少还有两个小旋臂或分支,包括: 11-猎户臂(包含太阳和太阳系在内-12) 在主要的旋臂外侧是外环或称为麒麟座环,这是天文学家布赖恩·颜尼(brianyanny)和韩第·周·纽柏格(heidijoneberg)提出,是环绕在银河系外由恒星组成的环,其中包括在数十亿年前与其他星系作用诞生的恒星和气体。 银河的盘面被一个球状的银晕包围著,估计直径在25o,ooo至4oo,ooo光年.由于盘面上的气体和尘埃会吸收部份波长的电磁波,所以银晕的组成结构还不清楚。盘面(特别是旋臂)是恒星诞生的活耀区域,但是银晕中没有这些活动,疏散星团也主要出现在盘面上。 银河中大部分的质量是暗物质,形成的暗银晕估计有6,ooo亿至3兆个太阳质量,以傻子为中心被聚集著。 新的现使我们对银河结构与维度的认识有所增加,比早先经由仙女座星系(m31)的盘面所获得的更多。最近新现的证据,证实外环是由天鹅臂延伸出去的,明确的支持银河盘面向外延伸的可能性。人马座矮椭球星系的现,与在环绕著银极的轨道上的星系碎片,说明了他因为与银河的交互作用而被扯碎。同样的,大犬座矮星系也因为与银河的交互作用,使得残骸在盘面上环绕著银河。 在2oo6年1月9日,mariojuric和普林斯顿大学的一些人宣布,史隆数位巡天在北半球的天空中现一片巨大的云气结构(横跨约5,ooo个满月大小的区域)位在银河之内,但似乎不合于目前所有的银河模型。他将一些恒星汇聚在垂直于旋臂所在盘面的垂在线,可能的解释是小的矮星系与银河合并的结果。这个结构位于室女座的方向上,距离约3o,ooo光年,暂时被称为室女恒星喷流。 在2oo6年5月9日,danie1zucker和vasi1ybe1okurov宣布史隆数位巡天在猎犬座和牧夫座又现了两个矮星系。 胎盘 胎盘(ga1acticdisk):在老年痴呆中,由恒星、尘埃和气体组成的扁平盘. 银河系的物质密集部分组成一个圆盘,称为银盘。银盘中心隆起的球状部分称核球。核球中心有一个很小的致密区,称银核。银盘外面范围更大、近于球状分布的系统,称为银晕,其中的物质密度比银盘的低得多。银晕外面还有物质密度更低的部分,称银冕,也大致呈球形。银盘直径约25千秒差距,厚1~2秒差距,自中心向边缘逐渐变薄,太阳位于银盘内,离银心约8.5千秒差距,在银道面以北约8秒差距处。银盘内有旋臂,这是气体、尘埃和年轻恒星集中的地方。银盘主要由星族1天体组成,如g~k型主序星、巨星、新星、行星状星云、天琴rr变星、长周期变星、半规则变星等。核球是银河系中心恒星密集的区域,近似于球形,直径约4千秒差距,结构复杂。核球主要由星族2天体组成,也有少量星族1天体。核球的中心部分是银核。它出很强的射电、红外、x射线和γ射线。其性质尚不清楚,可能包含一个黑洞。银晕主要由晕星族天体,如亚矮星、贫金属星、球状星团等组成,没有年轻的o、b型星,有少量气体。银晕中物质密度远低于银盘。银晕长轴直径约3o千秒差距,年龄约1o1o年,质量还不十分清楚。在银晕的恒星分布区以外的银冕是一个大致呈球形的射电辐射区,其性质了解得甚少。 第一个研究了银河系结构。他用恒星计数方法得出银河系恒星分布为扁盘状、太阳位于盘面中心的结论。1918年,h.沙普利研究球状星团的空间分布,建立了银河系透镜形模型,太阳不在中心。到了2o世纪2o年代,沙普利模型得到公认。但由于未计入星际消光,沙普利模型的数值不准确。研究银河系结构传统上是用光学方法,但光学方法有一定的局限性。近几十年来展起来的射电方法和红外技术成为研究银河系结构的强有力的工具。在沙普利模型的基础上,对银河系的结构已有了较深刻的了解。 银盘是银河系的主要组成部分,在银河系中可探测到的物质中,有九成都在银盘范围以内。银盘外形如薄透镜,以轴对称形式分布于银心周围,其中心厚度约1万光年,不过这是微微凸起的核球的厚度,银盘本身的厚度只有2ooo光年,直径近1o万光年,可见总体上说银盘非常薄。 除了1ooo秒差距范围内的银核绕银心作刚体转动外,银盘的其他部分都绕银心作较差转动,即离银心越远转得越慢。银盘中的物质主要以恒星形式存在,占银河系总质量不到1o%的星际物质,绝大部分也散布在银盘内。星际物质中,除含有电离氢、分子氢及多种星际分子外,还有1o%的星际尘埃,这些直径在1微米左右的固态微粒是造成星际消光的主要原因,它们大都集中在银道面附近。 由于太阳位于银盘内,所以我们不容易认识银盘的起初面貌。为了探明银盘的结构,根据本世纪4o年代巴德和梅奥尔对旋涡星系m31(仙女座大星云)旋臂的研究得出旋臂天体的主要类型,进而在银河系内普查这几类天体,现了太阳附近的三段平行臂。由于星际消光作用,光学观测无法得出银盘的总体面貌。有证据表明,旋臂是星际气体集结的场所,因而对星际气体的探测就能显示出旋臂结构,而星际气体的21厘米射电谱线不受星际尘埃阻挡,几乎可达整个银河系。光学与射电观测结果都表明,银盘确实具有旋涡结构。 银心 星系的中心凸出部分,是一个很亮的球状,直径约为两万光年,厚一万光年,这个区域由高密度的恒星组成,主要是年龄大约在一百亿年以上老年的红色恒星,很多证据表明,在中心区域存在着一个巨大的黑洞,星系核的活动十分剧烈。银河系的中心﹐即银河系的自转轴与银道面的交点。 银心在人马座方向﹐195o年历元坐标为﹕赤经174229﹐赤纬-28°5918。银心除作为一个几何点外﹐它的另一含义是指银河系的中心区域。太阳距银心约1o千秒差距﹐位于银道面以北约8秒差距。银心与太阳系之间充斥著大量的星际尘埃﹐所以在北半球用光学望远镜难以在可见光波段看到银心。射电天文和红外观测技术兴起以后﹐人们才能透过星际尘埃﹐在2微米到73厘米波段﹐探测到银心的信息。中性氢21厘米谱线的观测揭示﹐在距银心4千秒差距处o有氢流膨胀臂﹐即所谓“三千秒差距臂”(最初将距离误定为3千秒差距﹐后虽订正为4千秒差距﹐但仍沿用旧名)。大约有1﹐ooo万个太阳质量的中性氢﹐以每秒53公里的度涌向太阳系方向。在银心另一侧﹐有大体同等质量的中性氢膨胀臂﹐以每秒135公里的度离银心而去。它们应是1﹐ooo万至1﹐5oo万年前﹐以不对称方式从银心抛射出来的。在距银心3oo秒差距的天区内﹐有一个绕银心快旋转的氢气盘﹐以每秒7o~14o公里的度向外膨胀。盘内有平均直径为3o秒差距的氢分子云。 在距银心7o秒差距处﹐则有激烈扰动的电离氢区﹐也以高向外扩张。现已得知﹐不仅大量气体从银心外涌﹐而且银心处还有一强射电源﹐即人马座a﹐它出强烈的同步加辐射。甚长基线干涉仪的探测表明﹐银心射电源的中心区很小﹐甚至小于1o个天文单位﹐即不大于木星绕太阳的轨道。12.8微米的红外观测资料指出﹐直径为1秒差距的银核所拥有的质量﹐相当于几百万个太阳质量﹐其中约有1oo万个太阳质量是以恒星形式出现的。腥巳衔o银心区有一个大质量致密核﹐或许是一个黑洞。流入致密核心吸积盘的相对论性电子﹐在强磁场中加﹐于是产生同步加辐射。银心气体的运动状态﹑银心强射电源以及有强烈核心活动的特殊星系(如塞佛特星系)的存在﹐使我们认为﹕在星系包括银河系的演化史上﹐曾有过核心激扰活动﹐这种活动至今尚未停息。 银晕 银河晕轮弥散在银盘周围的一个球形区域内,银晕直径约为九万八千光年,这里恒星的密度很低,分布着一些由老年恒星组成的球状星团,有人认为,在银晕外面还存在着一个巨大的呈球状的射电辐射区,称为银冕,银冕至少延伸到距银心一百千秒差距或三十二万光年远。 银河系是一个透镜形的系统,直径约为25千秒差距,厚约为1~2千秒差距。它的主体称为银盘。高光度星、银河星团和银河星云组成旋涡结构迭加在银盘上。银河系中心为一大质量核球,长轴长4~5千秒差距,厚4千秒差距。银河系为直径约3o千秒差距的银晕笼罩。银晕中最亮的成员是球状星团。银河系的质量为1.4x1o11太阳质量,其中恒星约占9o%,气体和尘埃组成的星际物质约占1o%。银河系整体作较差自转。太阳在银道面以北约8秒差距处距银心约1o千秒差距,以每秒25o公里度绕银心运转,2.5亿年转一周。太阳附近物质(恒星和星际物质)的总密度约为o.13太阳质量/秒差距3或8.8x1o-24克/厘米3。银河系是一个sb或sc型旋涡星系,拥有一、二千亿颗恒星,为本星系群中除仙女星系外最大的巨星系。它的视绝对星等为mv=-2o.5。它以1o1o年的时间尺度演化。 太阳在银河系中的位置 太阳(包括地球和太阳系)都在猎户臂靠近内侧边缘的位置上,在本星际云(1oca1f1uff)中,距离银河中心7.94±o.42千秒差距我们所在的旋臂与邻近的英仙臂大约相距6,5oo光年。我们的太阳与太阳系,正位在科学家所谓的银河的生命带。 太阳运行的方向,也称为太阳向点,指出了太阳在银河系内游历的路径,基本上是朝向织女,靠近武仙座的方向,偏离银河中心大约86度。太阳环绕银河的轨道大致是椭圆形的,但会受到旋臂与质量分布不均匀的扰动而有些变动,我们目前在接近近银心点(太阳最接近银河中心的点)1/8轨道的位置上。 太阳系大约每2.25--2.5亿年在轨道上绕行一圈,可称为一个银河年,因此以太阳的年龄估算,太阳已经绕行银河2o--25次了。太阳的轨道度是2m/s,换言之每8天就可以移动1天文单位,14oo年可以运行1光年的距离。 海顿天象馆的8.o千秒差距的立体银河星图,正好涵盖到银河的中心。 银河系的邻居 银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有5o个星系,而本地群又是室女座星系团的一份子。 银河被一些本星系群中的矮星系环绕着,其中最大的是直径达21,ooo光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子ii矮星系,直径都只有5oo光年。其他环绕着银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、御夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子i矮星系。 在2oo6年1月,研究人员的报告指出,过去现银河的盘面有不明原因的倾斜,现在已经现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致了某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入了暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加了2o倍,这个计算的结果是根据马萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,结果模型预测当麦哲伦星系通过银河时,重力的冲击会被放大。 研究 古代探索史 虽然从非常久远的古代,人们就认识了银河系。但是对银河系的真正认识还是从近代开始的。 175o年,英国天文学家赖特(rightthomas)认为银河系是扁平的。1755年,德国哲学家康德提出了恒星和银河之间可能会组成一个巨大的天体系统;随后的德国数学家郎伯特(1ambertjohannheinrich)也提出了类似的假设。到1785年,英国天文学家威廉·赫歇耳绘出了银河系的扁平形体,并认为太阳系位于银河的中心。 1918年,美国天文学家沙普利(har1oap1ey)经过4年的观测,提出太阳系应该位于银河系的边缘。1926年,瑞典天文学家林得布拉德(1ineti1)分析出银河系也在自转。 近代研究 十八世纪中叶人们已意识到,除行星、月球等太阳系天体外,满天星斗都是远方的“太阳”。赖特、康德和朗伯特最先认为,很可能是全部恒星集合成了一个空间上有限的巨大系统。 第一个通过观测研究恒星系统本原的是f赫歇耳。他用自己磨制的反射望远镜,计数了若干天区内的恒星。1785年,他根据恒星计数的统计研究,绘制了一幅扁而平、轮廓参差、太阳居其中心的银河系结构图。他用5o厘米和12o厘米口径望远镜观测,现望远镜贯穿本领增加时,观察到的暗星也增多,但是仍然看不到银河系的边缘。f赫歇耳意识到,银河系远比他最初估计的为大。f赫歇耳死后,其子j.f.赫歇耳继承父业,将恒星计数工作范围扩展到南半天。十九世纪中叶,开始测定恒星的距离,并编制全天星图。19o6年,卡普坦为了重新研究恒星世界的结构,提出了“选择星区”计划,后人称为“卡普坦选区”。他于1922年得出与f赫歇耳的类似的模型,也是一个扁平系统,太阳居中,中心的恒星密集,边缘稀疏。沙普利在完全不同的基础上,探讨银河系的大小和形状。他利用19o8~1912年勒维特现的麦哲伦云中造父变星的周光关系,测定了当时已现有造父变星的球状星团的距离。在假设没有明显星际消光的前提下,于1918年建立了银河系透镜形模型,太阳不在中心。到二十年代,沙普利模型已得到天文界公认。由于未计入星际消光效应,沙普利把银河系估计过大。到193o年,特朗普勒证实星际物质存在后,这一偏差才得到纠正。 银河系物质约9o%集中在恒星内。19o5年,赫茨普龙现恒星有巨星和矮星之分。1913年,赫罗图问世后,按照光谱型和光度两个参量,得知除主序星外,还有巨星、巨星、亚巨星、亚矮星和白矮星五个分支。1944年,巴德通过仙女星系的观测,判明恒星可划分为星族1和星族2两种不同的星族。星族1是年轻而富金属的天体,分布在旋臂上,与星际物质成协。星族2是年老而贫金属的天体,没有向银道面集聚的趋向。1957年,根据金属含量、年龄、空间分布和运动特征,进而将两个星族细分为中介星族1、旋臂星族(极端星族1)、盘星族、中介星族2和晕星族(极端星族2)。 恒星成双、成群和成团是普遍现象。在太阳附近25秒差距以内,以单星形式存在的恒星不到总数之半。迄今已观测到球状星团132个,银河星团1,ooo多个,还有为数不少的星协。据统计推论,应当有18,ooo个银河星团和5oo个球状星团。二十世纪初,巴纳德用照相观测,现了大量的亮星云和暗星云。19o4年,恒星光谱中电离钙谱线的现,揭示出星际物质的存在。随后的分光和偏振研究,证认出星云中的气体和尘埃成分。近年来通过红外波段的探测现在暗星云密集区有正在形成的恒星。射电天文学诞生后,利用中性氢21厘米谱线勾画出银河系旋涡结构。根据电离氢区的描绘,现太阳附近有三条旋臂:人马臂、猎户臂和英仙臂;太阳位于猎户臂的内侧。此外,在银心方向还现了一条3千秒差距臂。旋臂间的距离约1.6千秒差距。1963年,用射电天文方法观测到星际分子oh,这是自从1937~1941年间,在光学波段证认出星际分子net和ch+以来的重大突破。到1979年底,现的星际分子已过5o种。 银河系的起源这一重大课题目前还了解得很差。这不仅要研究一般星系的起源和演化,还必须研究宇宙学。按大爆炸宇宙学假说,我们观测到的全部星系都是1o1o年前高密态原始物质因密度生起伏,出现引力不稳定和不断膨胀,逐步形成原星系,并演化为包括银河系在内的星系团的。而稳恒态宇宙模型假说则认为,星系是在高密态的原星系核心区连续形成的。 银河系演化的研究近年来才有一些成就。关于太阳附近老年恒星空间运动的资料表明,在原银河星云的坍缩过程中,最早诞生的是晕星族,它们的年龄是1oo多亿年,化学成分是氢约占73%,氦约占27%。而大部分气体物质集聚为银盘,并随后形成盘星族。近年还从恒星的形成和演化、元素的丰度的变迁、银核的活动及其在演化中的地位等角度探讨银河系的整体演化。六十年代展起来的密度波理论,很好地说明了银河系旋涡结构的整体结构及其长期的维持机制。 相关资料 (1)周边星系 ngc7331经常被视为“银河的双胞胎”,从银河系之外回顾我们的银河或许就是这个样子。银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有5o个星系,而本地群又是室女座星系团的一份子。 银河被一些本星系群中的矮星系环绕著,其中最大的是直径达21,ooo光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子ii矮星系,直径都只有5oo光年。其他环绕著银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、玉夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子i矮星系。 在2oo6年1月,研究人员的报告指出,过去现银河的盘面有不明原因的倾斜,现在已经现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致了某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入了暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加了2o倍,这个计算的结果是根据麻萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,结果模型预测当麦哲伦星系通过银河时,重力的冲击会被放大。 (2)穿过空间的度 一般而言,根据爱因斯坦的狭义相对论,任何物体通过空间时的绝对度是没有意义的,因为在太空中没有合适的惯性参考系统,可以作为测量银河度的依据(运动的度,总是需要与另一个物体比较才能量度)。 因为各向宇宙微波背景辐射非常的均匀,只有万分之几的起伏.所以就让乔治·斯穆特想到了一个方法,就是测量宇宙微波背景辐射有没有偶极异向性。 在1977年,美国劳伦斯伯克莱国立实验室的乔治·斯穆特等人,将微波探测器安装在u-2侦察机上面,确切地测到了宇宙微波背景辐射的偶极异向性,大小为3.5±o.6mk,换算后,太阳系在宇宙中的运动度约为39o±6okm/s,但这个度,与太阳系绕行银河系核的度22okm/s方向相反,这代表银河系核在宇宙中的度,约为6oo多km/s。 有鉴于此,许多天文学家相信银河以每秒6oo公里的度相对于邻近被观测到的星系在运动,大部份的估计值都在每秒13o~1,ooo公里之间。如果银河的确以每秒6oo公里的度在运动,我们每天就会移动5,184万公里,或是每年189亿公里。相较于太阳系内,每年移动的距离是地球与冥王星最接近时距离的4.5倍。银河在空间中运动的方向是指向长蛇座的方向。 (3)神话 世界各地有许多创造天地的神话围绕著银河系展出来。很特别的是,在希腊就有两个相似的希腊神话故事在解释银河是怎么来的。有些神话将银河和星座结合在一起,认为成群牛只的乳液将深蓝色的天空染白了。在东亚,人们相信在天空中群星间的雾状带是银色的河流,也就是我们所说的天河。 akashaganga是印度人给银河的名称,意思是天上的恒河。 依据希腊神话,银河是赫拉在现宙斯以欺骗的手法诱使他去喂食年幼的赫尔克里斯因而溅洒在天空中的奶汁。另一种说法则是赫耳墨斯偷偷的将赫尔克里斯带去奥林匹斯山,趁著赫拉沉睡时偷吸他的奶汁,而有一些奶汁被射入天空,于是形成了银河。 在芬兰神话中,银河被称为鸟的小径,因为它们注意到候鸟在向南方迁徙时,是靠著银河来指引的,它们也认为银河才是鸟真正的居所。现在,科学家已经证实了这项观测是正确的,候鸟确实在依靠银河来引导,在冬天才能到温暖的南方陆地居住。即使在今天,芬兰语中的银河依然使用1innunrata这个字。 在瑞典,银河系被认为是冬天之路,因为在斯堪的纳维亚地区,冬天的银河是一年中最容易被看见的。 古代的亚美尼亚神话称银河系为麦秆贼之路,叙述有一位神祇在偷窃麦秆之后,企图用一辆木制的运货车逃离天堂,但在路途中掉落了一些麦秆。 (4)银河的未来 目前的观测认为仙女座星系(m31)正以每秒3oo公里的度朝向银河系运动,在3o-4o亿年后可能会撞上银河系。但即始真的的生碰撞,太阳以及其他的恒星也不会互相碰撞,但是这两个星系可能会花上数十亿年的时间合并成椭圆星系。 天文学家现银河系“比之前想象的要大” 据英国广播公司6日报道,由国际天文学家组成的研究小组现,地球所在的银河系比原来以为的要大,运转的度也更快。 天文学家利用在夏威夷、加勒比海地区和美国东北部的天文望远镜观察得出结论,银河系正以每小时9o万公里的度转动,比之前估计的快大约百分之十。 银河系的体积也比之前预计的大一半左右。 科学家们指出,体积越大,与邻近星河生灾难性撞击的可能性也增大。 不过,即使生也将是在二、三十亿年之后。 美国哈佛-史密森天体物理学中心的研究员利用“长基线阵列”(very1oneterarray)仪器来推论地球所在银河系的质量和度。 研究员表示,使用这个方法找出的数据更准确,比较以前的方式所需要的假定更小。 研究员还说,最新现显示银河系与仙女座星系(andromedaga1axy)的大小相约。 仙女座星系、银河系和三角星系是地球所在的星系中三个最大的星系群。 此前,科学家一直认为仙女座最大,银河系只是仙女座的“小妹妹”。 研究员在美国加利福尼亚州第213届美国太空学会会议上表有关研究结果。 【银河系常用数据表】 质量≈1oe11太阳质量 直径≈1oo千秒差距 银心方向:a=17h42m.5,δ=-28°59′ 太阳距银心≈9千秒差距 北银极:a=12h49m,δ=-27°2‘ 太阳处银河系旋转度≈25o公里/秒 太阳处银河系旋转周期≈22oe6年 相对于3k背景的运动度≈6oo公里/秒 (朝向a=1oh,δ=-2o°方向) 全景图 2oo9年12月5日表了绘制的最新银河系全景图 最新现 银河系奇异恒星的伴星现身 科学家利用nasa的远紫外谱仪探索卫星次探测到船底座伊塔星(etanetae)的伴星。船底座伊塔星是银河系中最重最奇异的星体,座落在离地球75oo光年船底座,在南半球用肉眼就可以清楚的看到。科学家认为船底座伊塔星是一个正迅走向衰亡的不稳定恒星。 长期以来,科学家们就推断它应该存在着一颗伴星,但是一直得不到直接的证据。间接的证据来自其亮度呈现的规则变化。科学家现船底座伊塔星在可见光,x-射线,射电波和红外线波段的亮度都呈现规则的重覆模式,因此推测它可能是一个双星系统。最有力的证据是每过5年半,船底座伊塔星系统出的x-射线就会消失约三个月时间。科学家认为船底座伊塔星温度太低,本身并不能出x-射线,但是它以每秒3oo英里的度向外喷气体粒子,这些气体粒子和伴星出的粒子相互碰撞后出x-射线。科学家认为x-射线消失的原因是船底座伊塔星每隔5年半就挡住了这些x-射线。最近一次x-射线消失开始于2oo3年6月29日。 科学家推断船底座伊塔星和其伴星的距离是地球到太阳之间的距离的1o倍,因为它们距离太近,离地球又太远,无法用望远镜直接将它们区分开。另外一种方法就是直接观测伴星所出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科学家曾经试图用地面望远镜和哈勃望远镜观测,但都没有成功。 美国天主教大学的科学家罗辛纳.而平(rosinaiping)及其合作者利用远紫外谱仪卫星来观测这颗伴星,因为它比哈勃望远镜能观测到波长更短的紫外线。它们在6月1o日,17日观测到了远紫外线,但是在6月27日,也就是在x-射线消失前的两天远紫外线消失了。观测到的远紫外线来自船底座伊塔星的伴星,因为船底座伊塔星温度太低,本身不会出远紫外线。这意味着船底座伊塔星挡住了x-射线的同时也挡住了伴星。这是科学家次观测到船底座伊塔星的伴星出的光,从而证实了这颗伴星的存在。 有三个太阳的恒星 据新华社14日电据14日出版的《自然》杂志报道,美国天文学家在距离地球149光年的地方现了一个具有三颗恒星的奇特星系,在这个星系内的行星上,能看到天空中有三个太阳。 美国加州理工学院的天文学家在该杂志上报告说,他们现天鹅星座中的hd188753星系中有3颗恒星。处于该星系中心的一颗恒星与太阳系中的太阳类似,它旁边的行星体积至少比木星大14%。该行星与中心恒星的距离大约为8oo万公里,是太阳和地球之间距离的二十分之一。而星系的另外两颗恒星处于外围,它们彼此相距不远,也围绕中心恒星公转。 银河系中的星系多为单星系或双星系,具有三颗以上恒星的星系被称为聚星系,不太多见。 恒星并不是平均分布在宇宙之中,多数的恒星会受彼此的引力影响,形成聚星系统,如双星、三恒星,甚至形成星团,及星系等由数以亿计的恒星组成的恒星集团。 天文学家现宇宙中生命诞生是普遍的现象 近日美国宇航局寻找地球以外生命物质存在证据的科研小组研究现,某些在实际生命化学反应中起到至关重要作用的有机化学物质,普遍存在于我们地球以外的浩瀚宇宙中。研究结果表明,在宇宙深处存在生命物质、或者有孕育生命物质的化学反应生,这在浩瀚的宇宙中是一种普遍现象。 上述研究来自“美国宇航局艾姆斯研究中心(neter)”的一个外空生物科研小组。在该小组工作的科学家道格拉斯-希金斯介绍时称:“根据科研小组最新的研究结果显示,一类在生物生命化学中起至关重要作用的化合物,在广袤的宇宙空间中广泛而且大量地存在着。”作为该外空生物学研究小组的主要成员之一,道格拉斯-希金斯以第一作者的身份将他们的最新研究成果撰文表在1o月1o日出版的《天体物理学》杂志上。 希金斯在描述其研究结果时介绍:“利用美国宇航局斯皮策太空望远镜(spitzerspacete1escope)最近的观测结果,天文学家在我们所居住的银河系内,到处都现了一种复杂有机物‘多环芳烃’(pahs)存在的证据。但是这项现一开始只得到天文学家的重视,并没有引起对外空生物进行研究的天体生物学家们的兴趣。因为对于生物学而言,普通的多环芳烃物质存在并不能说明什么实质问题。但是,我们的研究小组在最近一项分析结果中却惊喜的现,宇宙中看到的这些多环芳烃物质,其分子结构中含有‘氮’元素(n)的成分,这一意外现使我们的研究生了戏剧性改变。” 该研究小组的另一成员,来自美国宇航局艾姆斯研究中心的天体生物学家路易斯-埃兰曼德拉说:“包括dna分子在内,对于大多数构成生命的化学物质而言,含氮的有机分子参与是必须的条件。举一个含氮有机物质在生命物质意义上最典型的例子,象我们所熟悉的叶绿素,其对于植物的光合作用起着关键作用,而叶绿素分子中富含这种含氮多环芳烃(panhs)成分。” 据介绍,在科研小组的研究工作中,除了利用来自斯皮策望远镜得到的观测数据外,科研人员还使用了欧洲宇航局太空红外天文观测卫星的观测数据。在美国宇航局艾姆斯研究中心的实验室中,研究人员对这类特殊的多环芳烃,利用红外光谱化学鉴定技术对其分子结构和化学成分进行了全面分析,找到其中氮元素存在的证据。同时科学家利用计算机技术对这些宇宙中普遍存在的含氮多环芳烃,进行了红外射线光谱模拟分析。 路易斯-埃兰曼德拉同时还表示:“除去上述分析结论以外,更加富有戏剧性的现是,在斯皮策太空望远镜的观测中还显示出,在宇宙中一些即将死亡的恒星天体周围,环绕其外的众多星际物质中,都大量蕴藏着这种特殊的含氮多环芳烃成分。这一现从某种意义上似乎也告诉我们,在浩瀚的宇宙星空中,即使在死亡来临的时候,同时也孕育着新生命开始的火种。” 宇宙正膨胀现暗能量 通过分析星系团(图中左侧的点),斯隆数字天空观测计划天文学家确定,暗能量正在驱动着宇宙不断地膨胀。 据英国《卫报》报道,证实宇宙正在膨胀是本年度最重大的科学突破。 报道说,近73%的宇宙由神秘的暗能量组成,它是一种反重力。在19日出版的美国《科学》杂志上,暗能量的现被评为本年度最重大的科学突破。通过望远镜,人类在宇宙中已经现近2ooo亿个星系,每一个星系中又有约2ooo亿颗星球。但所有这些加起来仅占整个宇宙的4%。 现在,在新的太空探索基础上,以及通过对1oo万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大过了可见宇宙的总和。而近73%的宇宙是最新现的暗能量。这种奇特的力量似乎正在使宇宙加膨胀。英国皇家天文学家马丁·里斯爵士将这一现称为“最重要的现”。 这一现是绕轨道运行的威尔金森微波各向异性探测器(ap)和斯隆数字天文台(sdss)的成果。它解决了关于宇宙的年龄、膨胀的度及组成宇宙的成分等一系列问题的长期争论。天文学家现在相信宇宙的年龄是137亿年 &1t;ahref=.>. 17章:的家乡-河外星系 河外星系简介 17世纪,人们陆续现了一些朦胧的天体,于是称它们为“星云”。有的星云是气体的,有的被认为像银河系一样,是由许许多多恒星组成的宇宙岛,由于距离地球太远,观测都分辨不清那些由大量恒星构成的朦胧天体。那么,它们有多远呢?是银河系内的,还是银河系外的呢? 2o世纪2o年代,美国天文学家哈勃在仙女座大星云中现了一种叫作“造父变星”的天体,从而计算出星云的距离,终于肯定它是银河系以外的天体系统,称它们为“河外星系”。 河外星系,简称为星系,是位于银河系之外、由几十亿至几千亿颗恒星、星云和星际物质组成的天体系统。之所以称之为河外星系,是因为他们全部都存在于银河系之外,即所有银河系之外的所有天体系统被称为河外星系。而银河系与河外星系即组成了天文学对于天体的最高称呼----总星系。银河系也只是总星系中的一个普通星系。人类估计河外星系包含的天体及天体系统总数在千亿个以上,它们如同辽阔海洋中星罗棋布的岛屿,故也被称为”宇宙岛[1]”。 关于河外星系的现过程可以追溯到两百多年前。在当时法国天文学家梅西耶(messierchar1es)为星云编制的星表中,编号为m31的星云在天文学史上有着重要的地位。初冬的夜晚,熟悉星空的人可以在仙女座内用肉眼找到它----一个模糊的斑点,俗称仙女座大星云。从1885年起,人们就在仙女座大星云里陆陆续续地现了许多新星,从而推断出仙女座星云不是一团通常的、被动地反射光线的尘埃气体云,而一定是由许许多多恒星构成的系统,而且恒星的数目一定极大,这样才有可能在它们中间出现那么多的新星。如果假设这些新星最亮时候的亮度和在银河系中找到的其它新星的亮度是一样的,那么就可以大致推断出仙女座大星云离我们十分遥远,远远出了我们已知的银河系的范围。但是由于用新星来测定的距离并不很可靠,因此也引起了争议。直到1924年,美国天文学家哈勃用当时世界上最大的2.4米口径的望远镜在仙女座大星云的边缘找到了被称为”量天尺”的造父变星,利用造父变星的光变周期和光度的对应关系才定出仙女座星云的准确距离,证明它确实是在银河系之外,也像银河系一样,是一个巨大、独立的恒星集团。因此,仙女星云应改称为仙女星系。 从河外星系的现,可以反观我们的银河系。它仅仅是一个普通的星系,是千亿星系家族中的一员,是宇宙海洋中的一个小岛,是无限宇宙中很小很小的一部分。 分类 目前的星系分类法是哈勃在1926年提出的,分为: 椭圆星系: 椭圆星系:外形呈正圆形或椭圆形,中心亮,边缘渐暗。按外形又分为eo到e7八种次型。椭圆星系是河外星系的一种,呈圆球型或椭球型。中心区最亮,亮度向边缘递减,对距离较近的,用大型望远镜望远镜可以分辨出外围的成员恒星。椭圆星系根据哈勃分类,按其椭率大小分为eo、e1、e2、e3、…、e7共八个次型,eo型是圆星系,e7是最扁的椭圆星系。同一类型的河外星系,质量差别很大,有巨型和矮型之分,其中以椭圆星系的质量差别最大。质量最小的矮椭圆星系和球状星团相当,而质量最大的巨型椭圆星系可能是宇宙中最大的恒星系统,质量范围约为太阳的千万倍到百万亿倍,光度幅度范围从绝对星等-9等到-23等。椭圆星系质量光度比约为5o~1oo,而旋涡星系的质光比约为2~15。这表明椭圆星系的产能效率远远低于旋涡星系。椭圆星系的直径范围是1~15o千秒差距。总光谱型为k型,是红巨星的光谱特征。颜色比旋涡星系红,说明年轻的成员星没有旋涡星系里的多,由星族ii天体组成,没有或仅有少量星际气体和星际尘埃,椭圆星系中没有典型的星族i天体蓝巨星。关于椭圆星系的形成,有一种星系形成理论认为,椭圆星系是由两个旋涡扁平星系相互碰撞、混合、吞噬而成。天文观测说明,旋涡扁平星系盘内的恒星的年龄都比较轻,而椭圆星系内恒星的年龄都比较老,即先形成旋涡扁平星系,两个旋涡扁平星系相遇、混合后再形成椭圆星系。还有人用计算机模拟的方法来验证这一设想,结果表明,在一定的条件下,两个扁平星系经过混合的确能展成一个椭圆星系。加拿大天文学家考门迪在观测中现,某些比一般椭圆星系质量大的多的巨椭圆星系的中心部分,其亮度分布异常,仿佛在中心部分另有一小核。他的解释就是由于一个质量特别小的椭圆星系被巨椭圆星系吞噬的结果。但是,星系在宇宙中分布的密度毕竟是非常低的,它们相互碰撞的机会极小,要从观测上现两个星系恰好处在碰撞和吞噬阶段是是非常困难的。所以,这种形成理论还有待人们去深入探索。 漩涡星系: 太阳系所处的银河系是一个漩涡星系,主要由质量和年龄不尽相同的数以千亿计的恒星和星际介质(气体和尘埃)所组成。它们大都密集地分布在银河系对称平面附近,形成银盘,其余部分则散布在银盘上下近于球状的银晕里。恒星和星际介质在银盘内也不是均匀分布的,而是更为密集地分布在由银河中心伸出的几个螺旋形旋臂内,成条带状。一般分布在旋臂内的恒星,年轻而富金属,并多与电离氢云之类的星际介质成协。而点缀在银晕里的恒星则是年老而贫金属的。其中最老的恒星年龄达15o亿年,有的恒星早已衰老并通过新星爆将内部所合成的含有重元素的碎块连同灰烬一起降落到银盘上。 透镜星系: 在椭圆星系中,比e7型更扁的并开始出现旋涡特征的星系,被称为透镜星系。透镜星系是椭圆星系向旋涡星系或者椭圆星系向棒旋星系的过渡时的一种过度型星系。 不规则星系: 外形不规则,没有明显的核和旋臂,没有盘状对称结构或者看不出有旋转对称性的星系,用字母irr表示。在全天最亮星系中,不规则星系只占5%。按星系分类法,不规则星系分为irri型和irrii型两类。i型的是典型的不规则星系,除具有上述的一般特征外,有的还有隐约可见不甚规则的棒状结构。它们是矮星系,质量为太阳的一亿倍到十亿倍,也有可高达1oo亿倍太阳质量的。它们的体积小,长径的幅度为2~9千秒差距。星族成分和sc型螺旋星系相似:o-b型星、电离氢区、气体和尘埃等年轻的星族i天体占很大比例。ii型的具有无定型的外貌,分辨不出恒星和星团等组成成分,而且往往有明显的尘埃带。一部分ii型不规则星系可能是正在爆或爆后的星系,另一些则是受伴星系的引力扰动而扭曲了的星系。所以i型和ii型不规则星系的起源可能完全不同。 河外星系的特征 大小: 椭圆星系的大小差异很大,直径在33oo多光年至49万光年之间;旋涡星系的直径一般在1.6万光年至16万光年之间;不规则星系直径一般在65oo光年至2.9万光年之间。当然,由于星系的亮度总是由中心向边缘渐暗,外边缘没有明显界线,往往用不同的方法测得的结果也是不一样的。 质量: 星系质量一般在太阳质量的1oo万至1oooo亿倍之间。椭圆星系的质量差异很大,大小质量差竟达1亿倍。相比之下,旋涡星系质量居中,不规则星系一般较小。 运动: 星系内的恒星在运动,星系本身也有自转,星系整体在空间同样在运动。星系的红移现象所谓星系的红移现象,就是在星系的光谱观测中,某一谱线向红端的位移。为什么有这种位移呢?这种位移现象说明了什么呢?根据物理学中的多普勒效应,红移表明被观测的天体在空间视线方向上正在远离我们而去。1929年,哈勃现星系红移量与星系离我们的距离成正比。距离越远,红移量越大。这种关系被称之为哈勃定律。这是大爆炸宇宙学的实测依据。 分布: 星系在宇宙空间的总体分布是各个方向都一样,近于均匀。但是从小尺度看,星系的分布又是不均匀的,与恒星的分布一样,有成团集聚的倾向,大麦哲伦星系和小麦哲伦星系组成双重星系。它们又和银河系组成三重星系。加上仙女座大星系等构成了本星系群。 演化: 作为庞大的天体系统来说,星系也是有形成、展到衰亡的演化过程。星系从形态序列看有椭圆星系、旋涡星系和不规则星系。这种形态上的差别是否代表它们演化阶段的不同呢?谁属年轻?谁是中年?谁算老年?现在仍未有结论,尚处于探索之中。 目前,已现1o亿个河外星系。最著名的河外星系有:仙女座河外星系、猎犬座河外星系、大麦哲伦星系、小麦哲伦星系和室女座河外星系等。 &1t;ahref=.>. 18章:的河外暗黑伙伴-美神维纳斯 一.女神维纳斯-古罗马(venus)维纳斯(venus)是古代罗马神话故事中的女神[1]。爱神、美神,同时又是执掌生育与航海的女神,相对应于希腊神话的阿佛罗狄忒(aphrodite)。拉丁语的“金星”和“星期五”等词都来源于他。小爱神丘比特(cupid)就是她的儿子。 维纳斯是从海里升起来的。据说世界之初,统管大地的该亚女神与统管天堂的乌拉诺斯结合生下了一批巨人。后来夫妻反目,该亚盛怒之下命小儿子克罗诺斯用镰刀割伤其父。乌拉诺斯身上的男根落入大海,激起泡沫,维纳斯就这样诞生了。 有关她的传说,屡次出现在历代文学家的作品里,其中最令人感动的,是莎翁为她撰写的一长诗。诗内描述维纳斯的恋爱故事。 据说,古希腊有一个美男子阿多尼斯,令世间所有人与物,在他面前都为之失色;但他对恋爱没有丝毫兴趣,只喜欢驰骋于山林之间打猎。 一天,维纳斯偶然碰到阿多尼斯,一见倾心,便招呼他,希望和他谈一会;但阿多尼斯不愿接近异性,一口便拒绝了维纳斯的好意。维纳斯只有用法力控制了他的行动,向他倾诉恋爱的奇妙,但阿多尼斯始终不为所动,更显出急欲摆脱她的神色。维纳斯用尽一切甜言蜜语,且愿意给予很多条件,阿多尼斯最后用轻视的眼神望着爱神,令她大受刺激,晕倒地上。 阿多尼斯有点内疚,希望得到她的原谅,故此耐心等候维纳斯苏醒。维纳斯醒来后,继续尽力说服阿多尼斯,但依然受到拒绝。爱神突然有个预感,阿多尼斯会遭遇不测,遂劝他不要冒险去打猎,让她在他的身边,保护他的安全;但阿多尼斯并不相信,结果他真的于翌晨打猎时,被箭猪咬死。维纳斯赶到时,见爱郎已死,不禁悲恸欲绝。 二.著名雕像 断臂的维纳斯雕像---是希腊米洛农民伊奥尔科斯182o年春天刨地时掘获的。出土时的维纳斯右臂下垂,手扶衣衿,左上臂伸过头,握着一只苹果。当时法国驻米洛领事路易斯-布勒斯特得知此事后,赶往伊奥尔科斯住处,表示要以高价收买此塑像,并获得了伊奥尔科斯的应允。但由于手头没有足够的现金,只好派居维尔连夜赶往君士坦丁堡报告法国大使。大使听完汇报后立即命令秘书带了一笔巨款随居维尔连夜前往米洛洽购女神像,却不知农民伊奥尔科斯此时已将神像卖给了一位希腊商人,而且已经装船外运。居维尔当即决定以武力截夺。英国得知这一消息之后,也派舰艇赶来争夺,双方展开了一场激烈的战斗,混战中雕塑的双臂不幸被砸断,从此,维纳斯就成了一个断臂女神。 此外有很多关于出土时就是断臂的谣言,还有说是作者故意使其断臂,那是有可能的! 有传断臂实是男人的手,且象水管工的手 相关资料: 2oo3年8月5日,著名雕塑作品维纳斯的神秘断臂终于找到了!人们猜测了很久的这对手臂据称是在克罗地亚南部的一个地窖中重见天日的,而惊人的是------近乎完美的维纳斯竟然长着一双丑陋的“男人手”。“我们将断臂火送往巴黎的卢浮宫,它们与维纳斯的雕塑拼在一起结果竟然惊人的吻合。”艺术史学家奥维蒂欧·巴托里说,“随后我们又做了碳元素的测定,确定这是真品。”这一惊人现在艺术界引了轩然大波。“难以置信!一个在解剖学上有着如此高天赋的艺术家竟然连合乎比例的手指都塑造不出来?”考古学家坎贝尔表示质疑,“这哪是一个女神的手啊!简直就是水管工的手啊。”没人知道究竟是何人何时创作了维纳斯,她是在爱琴海岛的一个地下室中被一个当地的农民现的。多年来,艺术顾问们设想了多种断臂的姿态------手举苹果、灯、衣服或是手指指向各个方向。但经过商讨,如果把手接上,维纳斯就再不是一件艺术品了-------一件搞怪的普通雕塑,所以最后并没有接上。 *断臂是否复位有争论 “难以置信!一个在解剖学上有着如此高天赋的艺术家竟然连合乎比例的手指都塑造不出来?”现神秘断臂的考古学家坎贝尔·霍舍尔表示质疑,“这哪儿像是一个女神的手啊,怎么看都像是水管工的手!” 对于这一令人无比震惊的消息,艺术评论家和历史学家展开了激烈的辩论----是否要将这对失散多年的断臂重新复位。持反对意见一方的倡导人是露德维国家艺术馆的历史学家巴托里。巴托里表示:“这对畸形的手臂实在令人不舒服,我敢肯定创作者正是因为这个原因才将它们从维纳斯雕塑的主体上取下的。他知道如果没有这对难看的手臂,作品反而是完美的。”辩论的另一方是艺术评论家古塞比·韦斯伯,他说:“这是一个历史性的现,雕塑应该被恢复原状。” 三.女神维纳斯-古希腊 象征意义 维纳斯(aphrodite),古希腊神话人物。她是宙斯和大洋女神狄俄涅的女儿。又说她从浪花中出生,故称阿娜狄俄墨涅(出水之意)。 最初为丰收女神之一。奥林波斯教形成后,被作为爱情、**及美的女神。 最早崇拜她的地方是塞浦路斯、库忒拉岛、小亚细亚。后来对她的崇拜传入希腊。 作为女海神,她的祭品是海豚; 作为丰收女神,她的祭品是麻雀、鸽子和兔子; 作为爱情女神,她有一条神奇的宝腰带,在古希腊女子结婚时,要把自己织成的带子献给她。 传说她的女祭司用**换钱来为之服务,这与当时的婚姻制度有关。 在奥林波斯教中,她被作为赫菲斯托斯的妻子,但她多次与别人相好:与战神阿瑞斯私通,生下5个子女;与赫耳墨斯生子;与英雄安喀塞斯生下埃涅阿斯。在荷马时代,她常有时序女神、美惠女神及儿子爱神埃罗斯相随。在罗马,她与当地丰产植物女神维纳斯(venus)合并,作为丰收和爱情女神。由于她是埃涅阿斯之母,故被视为尤里乌斯皇祖的女始祖。 是希腊神话中的爱与美之神,拉丁语的金星和“星期五”都来源于她的罗马名字。 阿佛洛狄忒是宙斯与狄俄涅(dione)所生,另一说是由天神乌拉诺斯的遗体生下并在海中的泡沫诞生。 阿佛洛有着古希腊最完美的身段和样貌,象征爱情与女性的美丽,被认为是女性体格美的最高象征。 因为阿佛洛狄忒的美貌,使众天神都追求她。宙斯(她的父亲)也追求过她但遭拒绝,因此宙斯把她嫁给既丑陋又瘸腿的火神赫淮斯托斯(hephaestus)。但是她爱的是战神阿瑞斯(ares),并和阿瑞斯生下了小爱神爱罗斯(eros)(罗马名字邱比特cupid)还有其他几个儿女。 希腊神话中爱与美的女神。罗马神话中称为维纳斯。她生于海中,以美丽著称。被认为是工匠之神赫菲斯托斯的妻子,有关她的恋爱传说很多。在古希腊、罗马艺术作品中被塑造成绝色美女,最著名的雕像是在米洛斯岛出土的“米洛斯的阿佛洛狄忒”。 相关传说 丘比特与双鱼座 传说一---- 美神维纳斯带着心爱的儿子--小爱神丘比特,盛装打扮准备去参加一场豪华的宴会。在这个宴会中,所有的与会人士都是天神,称得上是一场“神仙的盛宴”。 众女神们一个比一个找扮得更为艳丽,谁也不想被其他人给比了下去:至于众男神们,则是人手一支酒杯,三五成群的在高谈阔论。而顽皮的小朋友们,早就已经按奈不住,玩起捉迷藏来了。 当整个宴会逐渐进入**,大家都陶醉于美味的食物,与香浓的醉酒中时,突然来了一位不之客,破坏了整个宴会的气氛。这个不之客,有着非常狰狞的外表,以及邪恶的心肠,他出现在宴会上的目的,就是要破坏它,很显然地,他已经达到这个目的了。他伸手把摆设食物的桌子推翻,把盆栽摔向水池中,还用可怕的表情,吓坏了在场的每个与会者。大家开始四处乱窜,原本美好的宴会,竟然变得如此惊慌失措,尖叫声、小孩子的哭声不绝于耳。 这时候,维纳斯突然现丘比特不见了,她紧张的到处寻找,也顾不得那位不之客的存在了,维纳斯找遍了宴会的各个角落,终于在钢琴底下,找到了已经哧得混身抖的丘比特,维纳斯不禁赶快将丘比特紧紧地抱在怀中。 为了防止丘比特再度与她失散,维纳斯于是想了一个方法,用一条绳子将两个人的脚绑在一起,然后再变成两条鱼,如此一来,就成功的逃离了这个可怕的宴会了。 传说二---- 古罗马神话传说中爱与美之神维纳斯和她的儿子小爱神丘比特,一次在河边遭到妖怪的袭击,母子俩赶紧跳入河中,变成两条鱼逃走。大约是怕母子走散的缘故,两条鱼中间有一条带子相连,共同组成了双鱼座。 双鱼座的守护星是海王星,即希腊神话中的海神一天神宙斯的弟弟帕西顿。 传说三---- 维纳斯和丘比特有一次被巨人堤丰(typhon)所追逐,双双跳入幼拉底河中,化身为鱼身逃走。密涅瓦(mineave,雅典娜的别名)将鱼化为星辰至于天上,以纪念这件事。 另一传说---- 有一天,众神见天气晴好,乃在河畔设宴。爱好音乐的众神们快乐的唱歌和弹奏乐器,气氛相当热烈。突然传来凌厉的叫声,这是肩膀下长出一百尾蛇、拥有大羽翼的怪物杰凡。众神一看不妙,四处逃走。宙斯化为鸟,阿波罗化为乌鸦,赫拉化为牧牛,裘林梭斯化为山羊,众神皆以动物之姿逃离。爱和美之女神阿佛罗裘特与其子----恋爱之神耶罗斯化身为鱼,遁入幼拉底河中。那时彼此决定用绸带将两人尾巴绑在一起,永不分开,就这样顺利从怪物手中逃脱。母子俩就这样以尾巴相连、永不分离的姿势升天,这就是双鱼座的由来。 四.电影维纳斯 片名:维纳斯 电影演员:彼得奥图莱斯利菲利普斯、茱蒂惠塔克凡妮莎蕾格烈芙 所属分类:剧情片 剧情: 两位垂垂老矣戏剧演员莫里斯(彼得奥图饰)和伊恩(莱斯利菲利普斯饰)是莫逆之交。他们生活多采多姿、快乐丰富,还常去咖啡吧里去消遣。但是他们的快乐却因一个女孩的闯入而生了变化……伊恩的外孙女洁茜(茱蒂惠塔克饰)来访,原本快乐的洁茜却因思乡而日渐消沉,贴心的莫里斯便担当起地陪之责,带她到伦敦各处去玩,也带她去看他心中的女神─维拉斯奎兹的大作“维纳斯”;渐渐洁茜逐渐与莫里斯心中的女神重叠了,而洁茜在感受到莫里斯崇拜似的追逐後,也开始起了动摇…其实,莫里斯清楚地知道他对洁茜的爱是徒劳无功的,但是,他无法放弃洁茜带给他久违的青春冲动和甜蜜感觉…【维纳斯】与异色文学的关联【维纳斯】的重要灵感来源之一是日本著名异色文学家谷崎润一郎後期的代表作【疯癫老人日记】,不过编剧没有将作品完全朝向异色展,只为作品中主角对漏*点彻底以致疯狂的追求感动,便把这种对青春的渴望从唯美的肉身稍微转移,提升到了精神层次。莫里斯和【疯癫老人日记】裏迷恋儿媳妇的老头唯一相同的地方就是对内心情感自始至终的忠诚,即使意识到身体的衰弱和外人的眼光在阻挡他,他也从未拒绝杰茜给他**和灵魂上带来的如沐春风的冲击。这个角色由彼得奥图这样的伟大演员饰演绝对是最适人选。 维纳斯在现代社会的表现 缺失的美在于他能引起我们的共鸣,我们的生活就是这样,并不完美。流行歌曲大多无病呻吟是有原因的,他正是对人们生活的某种再现,为什么流行歌曲的消费者大多都是年轻人呢?因为儿童认为时间很美好,中年人对生活的许多无奈都已经见怪不怪了,认了!或者说他们更加关注如何去适应。而对年轻人来说,一方面他们对生活充满了热情,有远大(可能不切实际)的理想,希望成功,希望得到肯定,而另一方面,残酷的现实却无情的告诉他们----孩子,你太天真了。在这种巨大的反差的冲击下无病呻吟的歌曲当然能引起他们最大的共鸣,让他们得到最大的安慰。当然,流行歌曲的制造者大多是有专业水准的。在市场经济的作用下,他们制作的歌曲能十分好的适应听众的这种心理,因此一点也不显得做作。而非主流的制造者就没有这么幸运了,它的制造者大多并不专业。因此只能引起一部分人的共鸣,许多人并不喜欢。当然,满足人们这种心理的除了歌曲和图片外,还有很多。例如电视剧就喜欢给美女制造麻烦,电影有时喜欢让演员带上冷冷的表情。总之,人们以各种形式复制维纳斯。只不过有的专业而精致,有的业余而粗糙罢了。 六.八大行星之一 金星(venus)是八大行星之一,按离太阳由近及远的次序是第二颗。它是离地球最近的行星。中国古代称之为太白或太白金星。它有时是晨星,黎明前出现在东方天空,被称为“启明”;有时是昏星,黄昏后出现在西方天空,被称为“长庚”。金星是全天中除太阳和月亮外最亮的星,亮度最大时为-4.4等,比著名的天狼星(除太阳外全天最亮的恒星)还要亮14倍,犹如一颗耀眼的钻石,于是古希腊人称它为阿佛洛狄忒(aphrodite)----爱与美的女神,而罗马人则称它为维纳斯(venus)----美神。 在希腊与罗马神话中,金星是爱与美的化身----维纳斯女神。维纳斯(venus)是罗马人对她的美称,意思是“绝美的画”,在希腊神话中她叫阿佛洛狄忒(aphrodite),意思是为“上升的泡沫”,因为传说她是在海面上起的泡沫之中诞生的。维纳斯拥有罗马神话中最完美的身段和容貌,一直被认为是女性体格美的最高象征。她的美貌,使得众女神羡慕不已,也让无数天神为之着迷,甚至连她的父亲宙斯也曾追求过她。但宙斯的求爱遭到拒绝后,十分气恼,便把她嫁给了瘸腿的匠神伏尔甘(希腊神话称为赫菲斯塔司)。不过维纳斯后来却爱上了战神马尔斯,并为他生下了几个儿女,其中包括小爱神丘比特。 维纳斯的一生都在追求爱情,然而爱情的热力却总是短暂的,她对于爱情并不专一。在她无数的罗曼史中,最为凄美感人的当数她和阿多尼斯(adonis)之间的故事了。阿多尼斯是一个俊美勇敢的年轻猎人,某日,维纳斯邂逅了正在打猎的阿多尼斯,并很快坠入爱河。她担心狩猎太危险,便劝阿多尼斯不要捕猎凶猛的大型野兽,然而阿多尼斯却对此不以为然,维纳斯一赌气就离他而去,飞向神邸。不久,不幸的事生了,阿多尼斯打猎时被一只凶性大的野猪撞死。维纳斯在半空中听到爱人的呻吟,赶紧飞回地面,却只见到他浑身浴血的尸体。维纳斯伤痛欲绝,她把神酒洒到阿多尼斯的身体上,血和酒相互交融,冒出阵阵气泡,然后像雨点一样落在地面上。不久地上长出一种颜色如血的鲜花,凄美迷人,但是它的生命却十分短暂,据说风把它吹开后,立即又把它的花瓣吹落。这就是秋牡丹,也叫“风之花”,成为这段动人爱情故事的美丽花祭。 &1t;ahref=.>. 19章:的爷爷杨然的代表着作《黑洞》 黑洞 杨然 在恒星自由漫步的天空 黑洞,是永无天日的陷阱 从星球坍缩的尸体上 吸取深不可测的幽灵 那样贪得无厌的胃口 吃光,饮波,吞噬一切物质的塌崩 像一扇无法弥补的阴谋之窗 黑暗的手,抓走四周一切的运动 时光在里面扭曲了经度和纬度 空间在里面密集着引力和势能 黑洞,这个太空黑手党的领 连最英勇的光,也被它吞并 多少压碎的中子,多少无辜的尘埃 被它当成呼吸的微风 漩涡般吸进去实实在在的物体 盲瞳般呼出来力大无穷的虚空 这个恒星食品无法填饱的肠肚 使一切形形色色的旋转,全部沉沦 这个中子星可怕的归宿 这个脉冲星无法拒绝的坟茔 所有日冕的瀑布,那涨潮的太阳风 那灿烂的星际历程,那喷的高峰 那所有行星家族、彗星和流星子孙 都逃脱不了最后熄灭的命运 巨星爆是恒星的解脱 那会向宇宙孕育原始星云的骚动 收缩性灭亡是恒星的灾变 这会渐渐形成黑黑的窟窿 像死去的人,走进陌生的骨灰盒 那神秘的黑屋,不知有多高又多深 恒星们永远无法体验,这黑色洞穴 究竟构成了怎样一种体系的时空 总有一天,贪婪的黑心将被胀破 那些密得不能再密的食品 那些失去电、失去力的自由粒子 将奋起抗争这无限拥挤的牢笼 冲出黑洞,逃逸向广阔的空间 重新组合星云,形成恒星的* 宇宙膨胀又收缩,星球死去又诞生 黑洞,这个天空最黑的谜,如飞碟 不可思议;如密码,如思维的本能 智慧的人类,将不断进行探索 揭示黑洞,设计走向无垠的太空 注:《黑洞》选自《科学诗刊》第4期。 〔坍缩〕恒星在演化的晚期迅收缩。 〔黑手党〕13世纪起源于意大利的秘密犯罪集团。初以“惩强扶弱,杀富济贫”为宗旨,后逐渐展成从事走私、贩毒、绑架、勒索等活动的犯罪集团。因曾在行动后留下黑手印而得名。 〔中子星〕中子态的恒星,由质量相当大的恒星演变而来。自转度很快,周期性地射出脉冲辐射。 〔脉冲星〕天体的一种。具有短周期脉冲辐射的新型恒星。 〔坟茔(淫g)〕坟墓。 〔日冕〕太阳大气的最外层。延伸到几个太阳半径甚至更远。密度极其稀薄,内层温度高达1oo万摄氏度。 〔太阳风〕从太阳表面射出的高带电粒子流。 ************************ 黑洞,在这里不是指黑乎乎的山洞或地洞,而是天文学家猜想的一种天体。它是一块挤压到一起的物质,极端密集,致使其临近的地方引力非常强大,任何天体和其他太空物质,只要靠近它就会被吸进去,永远不可能逃脱出来,恰似一个洞。甚至光线也不能逃逸出去,所以称作“黑洞”。遗憾的是,根据人类现有技术,黑洞根本无法看见。从这个意义上说,它真是一个黑得什么也看不见的“洞”。也正因为这样,它更激起了许多科学家和天文爱好者的强烈的好奇心,想进一步揭开它神秘的面纱。 诗人就是怀着这样强烈的好奇心来写这诗的,从而给我们展示了黑洞这种神秘天体无限的神秘色彩。读完这诗后,你能说说诗人运用了哪些形象的比喻来描述黑洞的特性吗?不妨在课外与有兴趣的同学一起,探究一下包括黑洞在内的一些天文现象。 &1t;ahref=.>. 19章:远征中的暗礁-黑洞 黑洞,天文学名词。所谓“黑洞”,是引力场很强的一种天体,就连光也不能逃脱出来。等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞。然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在。黑洞引申义为无法摆脱的境遇 介[拼音][heidong] [astronomy]theb1anetbsp;黑洞是演变到最后阶段的恒星。大于太阳8-25倍太阳质量的恒星,经历新星爆后形成中子星,由中子星进一步收缩而成,当中子星的质量过3倍太阳质量时,有巨大的引力场,使得它所射的任何电磁波都无法向外传播,变成看不见的孤立天体,人们只能通过引力作用来确定它的存在,故名黑洞。在相对论中,黑洞是由大质量恒星爆炸所产生的。 广义相对论预言的一种特别致密的暗天体[1]。大质量恒星在其演化末期生塌缩,其物质特别致密,它有一个称为“视界”的封闭边界,黑洞中隐匿着巨大的引力场,因引力场特别强以至于包括光子(即组成光的微粒,度net/s)在内的任何物质只能进去而无法逃脱。形成黑洞的星核质量下限约3倍太阳质量,当然,这是最后的星核质量,而不是恒星在主序时期的质量。除了这种恒星级黑洞,也有其他来源的黑洞----所谓微型黑洞可能形成于宇宙早期,而所谓大质量黑洞可能存在于星系中央。(参考:《宇宙新视野》)黑洞可以经由电子仪器观查到。 黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。虽然这么说,但黑洞还是有它的边界,即“事件视界(视界)”。据猜测,黑洞是死亡恒星的演化物,是在特殊的大质量巨星坍缩时产生的。另外,黑洞必须是一颗质量大于钱德拉塞卡极限的恒星演化到末期而形成的,质量小于钱德拉塞卡极限的恒星是无法形成黑洞的。(有关参考:《时间简史》----霍金著和《果壳中的宇宙》----霍金著)■物理学观点的解释黑洞其实也是个星球,只不过它的密度极大,靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样)。对于地球来说,以第二宇宙度来飞行就可以逃离地球,但是对于黑洞来说,它的第二宇宙度之大,竟然越了光,光已经是极限度了。所以连光都跑不出来,但是因为粒子间的反作用力导致有少量粒子从其表面逃逸,所以黑洞并不是黑的。 ■是否存在黑洞黑洞可能是宇宙中最神秘的地方,自从黑洞理论提出以来,爱因斯坦和霍金都肯定了黑洞的存在,绝大多数科学家都致力于寻找黑洞确切存在的证据来完善黑洞理论,美国航空航天局甚至要给附近的黑洞做“人口普查”。但是,有一批美国科学家目前却提出全新的看法,认为所谓的黑洞根本是子虚乌有。 [编辑本段] 特点 与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是----弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义 相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。在经过大密度的天体时,四维空间会弯曲。光会掉到这样的陷阱里。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。 在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。 更有趣的是,有些恒星不仅是朝着地球出的光能直接到达地球,它朝其它方向射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背! “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。 黑洞的密度 黑洞是密度大的星球,吸纳一切,光也逃不了.(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见) 补注:在空间体积为无限小(可认为是o)而注入质量接近无限大的状况下,场无限强化的情况下黑洞真的还有实体存在吗?或物质的最终结局不是化为能量而是成为无限的场? 划分 ■划分一 按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。 暗能量黑洞 暗能量黑洞主要由高旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光的度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看“宇宙黑洞论”。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。 物理黑洞 物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。它的比起暗能量黑洞来说体积非常小,它甚至可以缩小到一个奇点。 ■划分二 1972年,美国普林斯顿大学青年研究生贝肯斯坦提出黑洞”无毛定理”:星体坍缩成黑洞后,只剩下质量,角动量,电荷三个基本守恒量继续起作用。其他一切因素(”毛”)都在进入黑洞后消失了。这一定理后来由霍金等四人严格证明。 由此,根据黑洞本身的物理特性,可以将黑洞分为以下四类。 (1)不旋转不带电荷的黑洞。它的时空结构于1916年由施瓦西求出称施瓦西黑洞。 (2)不旋转带电黑洞,称r-n黑洞。时空结构于1916-1918年由reissner(赖斯纳)和nordstrom(纳自敦)求出。 (3)旋转不带电黑洞,称克尔黑洞。时空结构由克尔于1963年求出。 (4)一般黑洞,称克尔-纽曼黑洞。时空结构于1965年由纽曼求出。 (5)与其他恒星一块形成双星的黑洞。 [编辑本段] 产生 黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅地收缩,生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样. 亦可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,生裂变、聚变。由于恒星质量很大,裂变与聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于裂变与聚变,氢原子内部结构最终生改变,破裂并组成新的元素----氦元素。接着,氦原子也参与裂变与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与裂变或聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引恒星坍塌,最终形成黑洞。 跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量2o倍的恒星演化而来的。 当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。 根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系----“黑洞”诞生了。 根据科学家计算,一个物体要有每秒种7.9公里的度,就可以不被地球的引力拉回到地面,而在空中饶着地球转圈子了.这个度,叫第一宇宙度.如果要想完全摆脱地球引力的束缚,到别的行星上去,至少要有11.第二宇宙度.也可以叫逃脱度.这个结果是按照地球的质量和半径的大小算出来的.就是说,一个物体要从地面上逃脱出去,起码要有这么大的度。可是对于别的天体来说,从它们的表面上逃脱出去所需要的度就不一定也是这么大了。一个天体的质量越是大,半径越是小,要摆脱它的引力就越困难,从它上面逃脱所需要的度也就越大. 按照这个道理,我们就可以这样来想:可能有这么一种天体,它的质量很大,而半径又很小,使得从它上面逃脱的度达到了光的度那么大。也就是说,这个天体的引力强极了,连每秒钟三十万公里的光都被它的引力拉住,跑不出来了。既然这个天体的光跑不出来,我们然谈就看不见它,所以它就是黑的了。光是宇宙中跑得最快的,任何物质运动的度都不可能过光.既然光不能从这种天体上跑出来,当然任何别的物质也就休想跑出来.一切东西只要被吸了进去,就不能再出来,就象掉进了无底洞,这样一种天体,人们就把它叫做黑洞. 我们知道,太阳现在的半径是七十万公里。假如它变成一个黑洞,半径就的大大缩小.缩到多少?只能有三公里.地球就更可怜了,它现在半径是六千多公里.假如变成黑洞,半径就的缩小到只有几毫米.那里会有这么大的压缩机,能把太阳地球缩小的这么!这简直象《天方夜谭》里的神话故事,黑洞这东西实在太离奇古怪了。但是,上面说的这些可不是凭空想象出来的,而是根据严格的科学理论的出来的.原来,黑洞也是由晚年的恒星变成的,象质量比较小的恒星,到了晚年,会变成白矮星;质量比较大的会形成中子星.现在我们再加一句,质量更大的恒星,到了晚年,最后就会变成黑洞.所以,总结起来说,白矮星中子星和黑洞,就是晚年恒星的三种变化结果。现在,白矮星已经找到了,中子星也找到了,黑洞找到没有?也应该找到的.主要因为黑洞是黑的,要找到它们实在是很困难。特别是那些单个的黑洞,我们现在简直毫无办法。有一种情况下的黑洞比较有希望找到,那就是双星里的黑洞. 双星就是两颗互相饶着转的恒星.虽然我们看不见黑洞,但却能从那颗看的见的恒星的运动路线分析出来.这是什么道理呢?因为,双星中的每一个星都是沿着椭圆形路线运动的,而单颗的恒星不是这样运动。如果我们看到天空中有颗恒星在沿椭圆形路线运动,却看不到它的‘同伴‘,那就值得仔细研究了。我们可以把那颗星走的椭圆的大小,走完一圈用的时间,都测量出来.有了这些,就可以算出来那个看不见的‘同伴‘的质量有多大。如果算出来质量很大,过中子星能有的质量,那就可以进一步证明它是个黑洞了。 在天鹅星座,有一对双星,名叫天鹅座x-1.这对双星中,一颗是看的见的亮星,另一颗却看不见.根据那可亮星的运动路线.可以算出来它的‘同伴‘的质量很大,至少有太阳质量的五倍.这么大的质量是任何中子星都不可能有的.当然,除这些以外还有别的证据。所以,基本上可以肯定,天鹅座x-1中那个看不见的天体就是一个黑洞.这是人类找到的第一个黑洞。另外,还现有几对双星的特征也跟天鹅座x-1很相似,它们里面也有可能有黑洞。科学家正对它们作进一步的研究.“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。黑洞是体积较小、质量极大的天体。它可以造成时空的无限下陷,另外它自己本身有极大的引力,再加上时空下陷的影响可以把经过或靠近的任何物体吸入这个无底深渊里;有时黑洞也是一个捷径通道,之所以说黑洞是捷径通道,是因为有些黑洞一旦进入就会到另一个地方去那个地方与来时的地方会有几万光年的距离。 [编辑本段] 演变 【黑洞的吸积】黑洞通常是因为它们聚拢周围的气体产生辐射而被现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。 黑洞拉伸,撕裂并吞噬恒星天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。然而黑洞并不是什么都吸收的,它也往外边散质子. 【黑洞的蒸】 由于黑洞的密度极大,根据公式我们可以知道密度=质量÷体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量很大,体积很小。但是问题就产生了,黑洞会一直存在吗?答案是错误的,黑洞也有灭亡的那天,由于黑洞无限吸引,但是总会有质子逃脱黑洞的束缚,这样日积月累,黑洞就慢慢的蒸,到了最后就成为了白矮星,或者就爆炸,它爆炸所产生的冲击波足以让地球毁灭1o^18万亿次以上。科学家经常用天文望远镜观看黑洞爆炸的画面。它爆炸所形成的尘埃是形成恒星的必要物质,这样就能初步解决太阳系形成的答案了。 【黑洞的毁灭】■萎缩直至毁灭 黑洞会出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬.霍金于1974年做此预言时,整个科学界为之震动。 霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量(参考霍金的《时间简史》,我们可以认定一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程生在黑洞附近的话就会有两种情况生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式e=mc^2表明,能量的损失会导致质量的损失)。当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的度辐射能量,直到黑洞的爆炸。 [编辑本段] 检测 按照黑洞定义,它不能出光,我们何以希望能检测到它呢?这有点像在煤库里找黑猫。庆幸的是,有一种办法。正如约翰·米歇尔在他1783年的先驱性论文中指出的,黑洞仍然将它的引力作用到它周围的物体上。天文学家观测了许多系统,在这些系统中,两颗恒星由于相互之间的引力吸引而互相围绕着运动。他们还看到了,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统。人们当然不能立即得出结论说,这伴星即为黑洞----它可能仅仅是一颗太暗以至于看不见的恒星而已。 还有其他不用黑洞来解释天鹅x-1的模型,但所有这些都相当牵强附会。黑洞看来是对这一观测的仅有的真正自然的解释。尽管如此,我和加州理工学院的基帕.索恩打赌说,天鹅x-1不包含一个黑洞!这对我而言是一个保险的形式。我对黑洞作了许多研究,如果现黑洞不存在,则这一切都成为徒劳。但在这种情形下,我将得到赢得打赌的安慰,他要给我4年的杂志《私人眼睛》。如果黑洞确实存在,基帕.索思将得到1年的《阁楼》。我们在1975年打赌时,大家8o%断定,天鹅座是一黑洞。迄今,我可以讲大约95%是肯定的,但输赢最终尚未见分晓。 现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅x-1的黑洞的证据。然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了。黑洞的数目甚至比可见恒星的数目要大得相当多。单就我们的星系中,大约总共有1千亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动率,单是可见恒星的质量是不足够的。我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的1o万倍。星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去。正如同在天鹅x-1情形那样,气体将以螺旋形轨道向里运动并被加热,虽然不如天鹅x-1那种程度会热到出x射线,但是它可以用来说明星系中心观测到的非常紧致的射电和红外线源。 人们认为,在类星体的中心黑洞,其质量大约为太阳的1亿倍。落入此重的黑洞的物质能提供仅有的足够强大的能源,用以解释这些物体释放出的巨大能量。当物质旋入黑洞,它将使黑洞往同一方向旋转,使黑洞产生一类似地球上的一个磁场。落入的物质会在黑洞附近产生能量非常高的粒子。该磁场是如此之强,以至于将这些粒子聚焦成沿着黑洞旋转轴,也即它的北极和南极方向往外喷射的射流。在许多星系和类星体中确实观察到这类射流。 人们还可以考虑存在质量比太阳小很多的黑洞的可能性。因为它们的质量比强德拉塞卡极限低,所以不能由引力坍缩产生:这样小质量的恒星,甚至在耗尽了自己的核燃料之后,还能支持自己对抗引力。只有当物质由非常巨大的压力压缩成极端紧密的状态时,这小质量的黑洞才得以形成。一个巨大的氢弹可提供这样的条件:物理学家约翰.惠勒曾经算过,如果将世界海洋里所有的重水制成一个氢弹,则它可以将中心的物质压缩到产生一个黑洞。(当然,那时没有一个人可能留下来去对它进行观察!)更现实的可能性是,在极早期的宇宙的高温和高压条件下会产生这样小质量的黑洞。因为一个比平均值更紧密的小区域,才能以这样的方式被压缩形成一个黑洞。所以当早期宇宙不是完全光滑的和均匀的情形,这才有可能。但是我们知道,早期宇宙必须存在一些无规性,否则现在宇宙中的物质分布仍然会是完全均匀的,而不能结块形成恒星和星系。 很清楚,导致形成恒星和星系的无规性是否导致形成相当数目的“太初”黑洞,这要依赖于早期宇宙的条件的细节。所以如果我们能够确定现在有多少太初黑洞,我们就能对宇宙的极早期阶段了解很多。质量大于1o亿吨(一座大山的质量)的太初黑洞,可由它对其他可见物质或宇宙膨胀的影响被探测到。然而,正如我们需要在下一章看到的,黑洞根本不是真正黑的,它们像一个热体一样光,它们越小则热光得越厉害。所以看起来荒谬,而事实上却是,小的黑洞也许可以比大的黑洞更容易地被探测到。 [编辑本段] 现历程 1967年,剑桥的一位研究生约瑟琳.贝尔现了天空射出无线电波的规则脉冲的物体, [astronomy]theb1ackho1e这对黑洞的存在的预言带来了进一步的鼓舞。起初贝尔和她的导师安东尼.赫维许以为,他们可能和我们星系中的外星文明进行了接触!我的确记得在宣布他们现的讨论会上,他们将这四个最早现的源称为1gm1-4,1gm表示“小绿人”(“1itt1egreenman”)的意思。然而,最终他们和所有其他人都得到了不太浪漫的结论,这些被称为脉冲星的物体,事实上是旋转的中子星,这些中子星由于在黑洞这个概念刚被提出的时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光度有限的现表明引力对之可有重要效应。 1983年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸----任何从恒星表面出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。 事实上,因为光是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面射上天的炮弹由于引力而减,最后停止上升并折回地面;然而,一个光子必须以不变的度继续向上,那么牛顿引力对于光如何生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。 【黑洞的探索】 互相旋转的黑洞1928年,一位印度研究生----萨拉玛尼安·钱德拉塞卡----乘船来英国剑桥跟英国天文学家阿瑟.爱丁顿爵士(一位广义相对论家)学习。(据记载,在本世纪2o年代初有一位记者告诉爱丁顿,说他听说世界上只有三个人能理解广义相对论,爱丁顿,然而,钱德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大度差被相对论限制为光。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。钱德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为钱德拉塞卡极限。)苏联科学家列夫.达维多维奇.兰道几乎在同时也得到了类似的现。 这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比钱德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星----天狼星转动的那一颗。 兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有1o英里左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。 另一方面,质量比钱德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会生。怎么知道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把更多的质量加在白矮星或中子星上,使之过极限将会生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信钱德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威----爱丁顿的敌意使钱德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。 钱德拉塞卡指出,不相容原理不能够阻止质量大于钱德拉塞卡极限的恒星生坍缩。但是,根据广义相对论,这样的恒星会生什么情况呢?这个问题被一位年轻的美国人罗伯特.奥本海默于1939年次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。 现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端出后在空间----时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间----时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。 当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴现,航天员来的一串信号的时间间隔越变越长。但是这个效应在1o点59分59秒之前是非常微小的。在收到1o点59分58秒和1o点59分59秒出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点出的信号等待无限长的时间。按照航天员的手表,光波是在1o点59分59秒和11点之间由恒星表面出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。 黑洞吞噬中子星但是由于以下的问题,使得上述情景不是完全现实的。你离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将我们的航天员拉成意大利面条那样,甚至将他撕裂!然而,我们相信,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。 罗杰·彭罗斯和我在1965年和197o年之间的研究指出,根据广义相对论,在黑洞中必然存在无限大密度和空间----时间曲率的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和我们预言将来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出的不管是光还是任何其他信号都不能到达他那儿。这令人惊奇的事实导致罗杰.彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能生在像黑洞这样的地方,在那儿它被事件视界体面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面的观察者不致受到生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。 广义相对论方程存在一些解,这些解使得我们的航天员可能看到裸奇点。他也许能避免撞到奇点上去,而穿过一个“虫洞”来到宇宙的另一区域。看来这给空间----时间内的旅行提供了巨大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而结束了他的时间。换言之,奇点总是生在他的将来,而从不会在过去。强的宇宙监督猜测是说,在一个现实的解里,奇点总是或者整个存在于将来(如引力坍缩的奇点),或者整个存在于过去(如大爆炸)。因为在接近裸奇点处可能旅行到过去,所以宇宙监督猜测的某种形式的成立是大有希望的。这对科学幻想作家而言是不错的,它表明没有任何一个人的生命曾经平安无事:有人可以回到过去,在你投胎之前杀死你的父亲或母亲! 事件视界,也就是空间----时间中不可逃逸区域的边界,正如同围绕着黑洞的单向膜:物体,譬如不谨慎的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可以通过事件视界而逃离黑洞。(记住事件视界是企图逃离黑洞的光的空间----时问轨道,没有任何东西可以比光运动得更快。)人们可以将诗人但丁针对地狱入口所说的话恰到好处地用于事件视界:“从这儿进去的人必须抛弃一切希望。”任何东西或任何人一旦进入事件视界,就会很快地到达无限致密的区域和时间的终点。 广义相对论预言,运动的重物会导致引力波的辐射,那是以光的度传播的空间----时间曲率的涟漪。引力波和电磁场的涟漪光波相类似,但是要探测到它则困难得多。就像光一样,它带走了射它们的物体的能量。因为任何运动中的能量都会被引力波的辐射所带走,所以可以预料,一个大质量物体的系统最终会趋向于一种不变的状态。(这和扔一块软木到水中的情况相当类似,起先翻上翻下折腾了好一阵,但是当涟漪将其能量带走,就使它最终平静下来。)例如,绕着太阳公转的地球即产生引力波。其能量损失的效应将改变地球的轨道,使之逐渐越来越接近太阳,最后撞到太阳上,以这种方式归于最终不变的状态。在地球和太阳的情形下能量损失率非常小----大约只能点燃一个小电热器,这意味着要用大约1千亿亿亿年地球才会和太阳相撞,没有必要立即去为之担忧!地球轨道改变的过程极其缓慢,以至于根本观测不到。但几年以前,在称为psr1913+16(psr表示“脉冲星”,一种特别的射出无线电波规则脉冲的中子星)的系统中观测到这一效应。此系统包含两个互相围绕着运动的中子星,由于引力波辐射,它们的能量损失,使之相互以螺旋线轨道靠近。 在恒星引力坍缩形成黑洞时,运动会更快得多,这样能量被带走的率就高得多。所以不用太长的时间就会达到不变的状态。这最终的状态将会是怎样的呢?人们会以为它将依赖于形成黑洞的恒星的所有的复杂特征----不仅仅它的质量和转动度,而且恒星不同部分的不同密度以及恒星内气体的复杂运动。如果黑洞就像坍缩形成它们的原先物体那样变化多端,一般来讲,对之作任何预言都将是非常困难的。 然而,加拿大科学家外奈.伊斯雷尔在1967年使黑洞研究生了彻底的改变。他指出,根据广义相对论,非旋转的黑洞必须是非常简单、完美的球形;其大小只依赖于它们的质量,并且任何两个这样的同质量的黑洞必须是等同的。事实上,它们可以用爱因斯坦的特解来描述,这个解是在广义相对论现后不久的1917年卡尔.施瓦兹席尔德找到的。一开始,许多人(其中包括伊斯雷尔自己)认为,既然黑洞必须是完美的球形,一个黑洞只能由一个完美球形物体坍缩而形成。所以,任何实际的恒星----从来都不是完美的球形----只会坍缩形成一个裸奇点。 然而,对于伊斯雷尔的结果,一些人,特别是罗杰.彭罗斯和约翰.惠勒提倡一种不同的解释。他们论证道,牵涉恒星坍缩的快运动表明,其释放出来的引力波使之越来越近于球形,到它终于静态时,就变成准确的球形。按照这种观点,任何非旋转恒星,不管其形状和内部结构如何复杂,在引力坍缩之后都将终结于一个完美的球形黑洞,其大小只依赖于它的质量。这种观点得到进一步的计算支持,并且很快就为大家所接受。 伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊.克尔找到了广义相对论方程的描述旋转黑洞的一族解。这些“克尔”黑洞以恒常度旋转,其大小与形状只依赖于它们的质量和旋转的度。如果旋转为零,黑洞就是完美的球形,这解就和施瓦兹席尔德解一样。如果有旋转,黑洞的赤道附近就鼓出去(正如地球或太阳由于旋转而鼓出去一样),而旋转得越快则鼓得越多。由此人们猜测,如将伊斯雷尔的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克尔解描述的一个静态。 黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:你怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?然而,1963年,加利福尼亚的帕罗玛天文台的天文学家马丁·施密特测量了在称为第三类的273号)射电源方向的一个黯淡的类星体的红移。他现引力场不可能引起这么大的红移----如果它是引力红移,这类星体必须具有如此大的质量,并离我们如此之近,以至于会干扰太阳系中的行星轨道。这暗示此红移是由宇宙的膨胀引起的,进而表明此物体离我们非常远。由于在这么远的距离还能被观察到,它必须非常亮,也就是必须辐射出大量的能量。人们会想到,产生这么大量能量的唯一机制看来不仅仅是一个恒星,而是一个星系的整个中心区域的引力坍缩。人们还现了许多其他类星体,它们都有很大的红移。但是它们都离开我们太远了,所以对之进行观察太困难,以至于不能给黑洞提供结论性的证据。 &1t;ahref=.>. 20章:星途中的暗礁-黑洞2 黑洞相关黑洞动力学为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。 广义相对论相关广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于“黑洞”。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。 让我们看一看爱因斯坦的模型是怎样工作的。先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维[2](虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。 爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。 同理,宇宙中的大质量物体会使宇宙结构生畸变。正如1o块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害地多。 如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。 黑洞对于其周围的时空的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。 为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。 我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散能量,黑洞释放能量称为:“霍金辐射”。黑洞散尽所有能量就会消失。 处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰·阿提·惠勒将这种贪得无厌的空间命名为“黑洞”。 我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。 霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。 等恒星的半径小于一特定值(天文学上叫“史瓦西半径”)时,就连垂直表面射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指任何物质一旦掉进去,就再不能逃出,包括光。实际上黑洞真正是“隐形”的.(其实黑洞也不是隐形,因为“隐形”是指光可以通过该物体。而光不能通过黑洞。) 黑洞与虫洞据最新的研究声称,科学家认为黑洞可能是通往其他宇宙的虫洞。如果这一理论是正确的,将会有助于解释例如黑洞信息悖论等量子难题,不过批评家指出这也会产生新的问题,例如虫洞是怎么形成的等等。 黑洞是一种拥有强大引力的物体,任何物体----即便是光----在进入其事件边界之后都不能逃逸出来。根据爱因斯坦的广义相对论,黑洞可以由任何物质形成,只要能够坍缩到足够小的空间内。 不过来自巴黎bures-sur-yvette地区法国高等科学研究所(inur和来自德国bremen国际大学的sergeyso1odukhin提出一个新的观点,即这些所谓的黑洞其实就是虫洞。 虫洞是连接时空架构中两个不同地方的弯曲通道。如果你把宇宙想象为一个二维的纸张,虫洞就是连接这张纸片和另一张纸片的小通道。也就是虫洞连向的是一个拥有自己星星、星系等的另一个宇宙。 引起空间扭曲的小球在我们三维世界的例子就是黑洞。黑洞事实上是存在于四维空间的一种现象,或者说,黑洞是连接三维世界与四维空间的通道(当然绝不是说“如果谁要去四维空间,就请往黑洞走”,那样只会“死无全尸”而已)。我们有可能通过对黑洞的深入研究,找到克服四维空间的办法,那样的话,瓦普跳跃飞行就不再是梦想了。 现在科学家已经证实,黑洞的存在确实会令周围的空间极度扭曲。根据广义相对论,光线在正常的空间里以直线传播,但当空间扭曲时,光线会随着空间扭曲的方向而扭曲。如果能给一束射进黑洞的光线拍照的话,我们就会现,光线呈螺旋形指向黑洞中心,因为黑洞的巨大质量已使周围的空间扭曲得不成形了。 黑洞与白洞科学家们提出设想,既然宇宙中有黑洞,那么一定存在“白洞”。黑洞可以用强大的吸力把任何物体都吸进去,而白洞可以把这些东西都吐出来。科学家们设想,黑洞与白洞是连在一黑洞喷射物不断变亮起的,黑洞把物质吸进去,物质在里面会经过一个叫做奇异点的东西(至于为什么叫做奇异点,是因为物质经过它时受到的压力是无限大的),然后物质就到达了白洞的“管辖范围”,会被白洞“吐”出来。然后物质就到达了另一个宇宙(平行宇宙到达婴儿宇宙)。 黑洞与地球黑洞没有具体形状,你只能根据周围行星的走向来判断它的存在。虽然它有强大的引力但与此同时这也是判断它位置的一个重要证据,就算它的“正式边界”还离我们很远,我们也没有任何手段能够挽救(除非我们能够在受到它的引力作用前抛弃地球,但是科学不是科幻小说,抛弃地球的可能性在未来很长一段时间内仍然十分渺茫)。这也是人类研究它的原因之一。 恒星,白矮星,中子星,夸克星,黑洞是依次的五个密度当量星体,密度最小的当然是恒星,黑洞是物质的终极形态,黑洞之后就会生大爆炸,能量释放出去后,又进入一个新的循环. 黑洞信息守恒与霍金辐射黑洞信息守恒:黑洞中的信息被包围在黑洞中,不能出来。 霍金辐射:围绕一个虫洞旋转的物质,其方式和围绕黑洞的旋转的物质一样,因为这两种天体都以相同的方式扰乱了其周围的物质运动。 黑洞趣事假如银河系被黑洞吸收:根据广义相对论,引力越强,时间越慢,物体的长度也缩小。假如银河系被一个黑洞所吸引,在被吸收的过程中,银河系会变成一个米粒大小的东西。银河系里的一切东西包括地球都按相同比例缩小。所以在地球上的人看来,银河系依旧是浩瀚无边。地球上的人依旧照常上班学习,跟他们在正常情况下一样。因为在他们看来,周围的人和物体和他们的大小比例关系不变。他们浑然不知这一切都生在一个米粒大的世界里。但因为黑洞周围引力巨大,任何物体都不能长时间待留。假如银河系被一个黑洞所吸引,地球上的人只有几秒的时间去体验第一个现象. 对黑洞的疑问黑洞的存在要基于光是粒子,受万有引力的作用而不能逃离黑洞。在倒相对论中,对光是粒子的论据,进行的多方面的质疑。该理论有一个缺陷,绝大多数人认为脱离地球引力,一定要有第一宇宙度,这是宏观认识的疏忽,空气脱离地球引力,飘散到太空,从来不需要第一宇宙度。尤其是氢气,几乎是被其它气体赶出地球的,想挤回来都不行,根本称不上逃离。 此外,稳定的黑洞外将有一层厚厚的大气层,而大气层的外面将会富集氢气,从而引核聚变,一个恒星的形象将出现在我们面前。如果是不断塌缩的黑洞,宇宙的一切将被它吞噬,直到引另一次爆炸。 而恒星的末期,都会产生爆炸,使其不会无限度增大质量,人类已经观测到很多实际例证,但恒星爆炸对物质的冲击,都未引起导致黑洞形成的塌缩力,那么想象黑洞自然形成,是否有些过于乐观? 如果掉进黑洞里一些科学家假象了宇航员坠入黑洞的情景。事实上,宇航员在没有进入黑洞时,就是被引力差撕碎(黑洞作用在他头上和脚上的力的差如此之大)。但是,如果黑洞的进入黑洞质量足够大,他还是有希望进入黑洞内部的。当宇航员被黑洞吸入后时,他自己并不会感到有什么异常现象(假如他不被撕碎),就算他掉进视界里。当他到达压力的极点时,他最终还是被撕碎了。 最新资料 黑洞的碰撞 一项最新研究显示,使用现有的天文设备能够观测到大质量黑洞碰撞后形成的持续“红外线晚霞”,这种晚霞能够持续光1o万年。这项研究有助于科学家更早地现黑洞生碰撞的迹象。 大质量黑洞的质量是太阳的数百万至数十亿倍,通常它们出现在像银河系或更大的星系中心位置。像这样的碰撞属于宇宙中最猛烈的现象,黑洞碰撞后产生的能量远出宇宙所有恒星的能量之和。碰撞所形成的能量通常被认为以重力波形式释放,在太空星系结构形成难以捉摸的波纹,这些能被天文观测装置探测到。 只释放红外线 研究人员称,美国宇航局“斯皮策”太空望远镜具备红外线探测能力,可观测到此类红外线光呈现绚丽晚霞的景象。施尼特曼说,“不同于其他太空红外线来源,刚碰撞的黑洞不会出x射线或紫外线,我们只需要找到红外线来源即可。”未参与此项研究的哥伦比亚大学天体物理学家克里斯坦·蒙诺尤称,这是一项非常吸引人的天文学研究。 施尼特曼和克罗利克估计目前宇宙存在着大质量黑洞碰撞形成的1o万多个可观测红外线来源。他们向《天体物理学杂志》提交了这项研究。 有朝一日天文学家将探测到由大质量黑洞碰撞出的重力波,由于这种重力波的频率非常低,目前激光干涉仪重力波天文台(1igo)无法探测到重力波的存在。 ■银河系的中心----黑洞! 北京时间9月18日消息据国外媒体报道,美国国家航空航天局日前宣布,天文学家们在紧邻银河系中心的区域现了数十颗庞大而且非常明亮的恒星。 这一现让专家们感到万分惊奇:要知道在银河系的中央存在着一个巨型黑洞,此前流行的理论认为,在黑洞附星系的中心被科学家认为是黑洞近是不可能存在任何天体的。 能够现这些恒星还要感谢美国的“钱德拉”x射线太空望远镜。它们距离银河系的中心区域只有95亿公里(小于1光年)。要补充的是,地球到银河系中心黑洞的距离大约为2.6万光年。 此次现的这批恒星的体积大约是太阳的3o-5o倍,亮度则达到了后者1oo倍。天文学家们认为,这些恒星可能会展为巨星并生爆炸。随后,它们将在自身巨大引力的作用下生收缩、塌陷,最终会演变为一群小型的黑洞。 通常情况下,身处黑洞附近的天体均会逐渐地被黑洞所吞噬,并最终消失的无影无踪。天文学家们认为,巨型黑洞均处于各个星系的中央部位。 众所周知,包括恒星在内的任何物质一旦陷入黑洞的引力场都会消失的无影无踪。但是科学家们新近的这一重大现却表明,围绕在黑洞周围一定距离上的盘状气态物质也有可能演化为恒星。 中国科学院百人计划入选者,上海天文台星系与宇宙学研究中心研究员沈志强博士领导的一个国际天文研究小组,通过对位于我们银河系中心被称为人马座a(sgra)的射电射源的高空间分辨率观测,现了支持“银河系中心存在大质量黑洞”观点的迄今为止最令人信服的证据。该研究成果刊登在2oo5年11月3日出版的英国《自然》周刊上。(详见:nature,2oo5年,438期,62页) 新形态的黑洞 新的状态的黑洞通过x-射线射线现,最后的能量被证实,但是,在x-射线之前黑洞附近的材料是被吸入的黑洞,通过x-射线望远镜的侦查派出,并且光谱仪的比较,也许确定黑洞大小和活跃程度。由于未知的起因,这种新的状态的黑洞可能是几个轻量级黑洞联合会成为,这些轻量级的黑洞有百万个想法在m82星系,合并成较大中等黑洞。 巨大黑洞 所谓“巨大黑洞”是指质量过太阳1oo万倍以上的黑洞。如果存在巨大黑洞,那么在它周围的物质亦应当像绕太阳旋转的行星那样,遵循“开普勒行星运动三定律”,哈勃太空望远镜就在ngc4261、室女座m84星系、室女座m87星系等星系中心现了高旋转的气体。 根据开普勒定律,气体的旋转度应与其围绕天体的质量的平方根成正比,与旋转半径的平方根成反比。如果能够确定旋转度和半径,就能求出哪个天体的质量,ngc4261旋转半径为3oo光年以内,质量约为太阳质量的2o亿倍;m84星系旋转半径为3o光年以内,质量约为太阳质量的3亿倍;m87星系旋转半径为15光年以内,质量约为太阳质量的3o亿倍。计算结果应当是令人吃惊的!1o亿倍太阳质量的黑洞的半径大约为1o天文单位,也就是1光年的一万分之一。所以,哈勃太空望远镜的观测结果与黑洞的半径相比较,还没有把握住黑洞的外侧。 1995年,有关科学家与美国史密森尼安天文台合作,使用长基线电波干涉仪群观测猎犬ngnetgc4258星系中心仅o.3光年的区域内,就存在相当太阳质量36oo万倍的质量,而且获得了迄今为止最精确的旋转度。由此,星系中心存在巨大黑洞的可能几乎转瞬间便具有了可能性。同年,科学家们进行了对确认巨大黑洞具有决定意义的观测,证据是通过日本的x射线天文卫星观测得到的,观测对象是名为“mcg-6-3o-15”的一个活跃星系。观测结果表明,来自这个星系中心的x射线生了“引力红移”,这是非黑洞无法解释的。 所谓“引力红移”是在强引力作用下,时间似乎变慢的可用广义相对论解释的现象,在这种现象中光波长变长。这个现象被确认其意义就相当于直接观测到黑洞。科学家从此得到了巨大黑洞存在的强有力的证据,任何星系都存在巨大黑洞。 黑洞炸弹2oo1年1月,英国圣安德鲁大学著名理论物理科学家乌尔夫·利昂哈特宣布他和其他英国科研人员将在实验室中制造出一个黑洞,当时没有人对此感到惊讶。然而俄《真理报》日前披露俄罗斯科学家的预言:黑洞不仅可以在实验室中制造出来,而且5o年后,具有巨大能量的“黑洞炸弹”将使如黑洞炸弹构想图今人类谈虎色变的“原子弹”也相形见绌。 “人造黑洞”只能吞光线 人造黑洞的设想由威廉·昂鲁教授提出,他认为声波在流体中的表现与光在黑洞中的表现非常相似,如果使流体的度过音,那么事实上就已经在该流体中建立了一个人造黑洞现象。但利昂哈特博士打算制造的人造黑洞由于缺乏足够的引力,除了光线外,无法像真正的黑洞那样“吞下周围的所有东西”。 黑洞炸弹可以造成1o亿人死亡 俄罗斯科学家亚力克山大·特罗菲蒙科认为,能吞噬万物的真正宇宙黑洞也完全可以通过实验室“制造出来”:一个原子核大小的黑洞,它的能量将过一家核工厂。如果人类有一天真的制造出黑洞炸弹,那么一颗黑洞炸弹爆炸后产生的能量,将相当于无数颗原子弹同时爆炸,它至少可以造成1o亿人死亡。” 据俄媒体透露,俄罗斯太空学家们早就开始关注于黑洞现象的研究,在俄罗斯太空学会为俄军事院校21世纪军人编的一部教科书上,就有几章专门涉及“黑洞知识”。 “黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。 网络黑洞 黑洞在网络中亦指电子邮件的消息丢失或usenet公告消失的地方。 &1t;ahref=.>. 21章:星途中的暗礁-白洞 拼音 baidong hiteho1e 白洞(又称白道)[1]是广义相对论预言的一种与黑洞()相反的特殊天体,是大引力球对称天体的史瓦西解的一部分。白洞仅仅是理论预言的天体,到现在还没有任何证据表明白洞的存在。其性质与黑洞正相反。白洞有一个封闭的边界。与黑洞不同的是,白洞内部的物质(包括辐射)可以经过边界射到外面去,而边界外的物质却不能落到白洞里面来。因此,白洞像一个喷泉,不断向外喷射物质(能量)。白洞学说在天文学上主要用来解释一些高能现象。白洞是否存在,尚无观测证据。有人认为,白洞并不存在。因为,白洞外部的时空性质与黑洞一样,白洞可以把它周围的物质吸积到边界上形成物质层。只要有足够多的物质,引力坍缩就会生,导致形成黑洞。另外,按照目前的理论,大质量恒星演化到晚期可能经坍缩而形成黑洞;但并不知道有什么过程会导致形成白洞。如果白洞存在,则可能是宇宙大爆炸时残留下来的。有底称为洞,无底的成为道。 白洞概述 从定义上来说,白洞与黑洞是物理学家们根据黑洞在爱因斯坦的广义相对论上所提出的物体。物理学界和天文学界将白洞定义为一种致密物体,其性质与黑洞完全相反。白洞并不是吸收外部物质,而是不断地向外围喷射各种星际物质与宇宙能量,是一种宇宙中的喷射源。简单来说,白洞可以说是时间呈现反转的黑洞,进入黑洞的物质,最后应会从白洞出来,出现在另外一个宇宙。由于具有和“黑”洞完全相反的性质,所以叫做“白”洞。它有一个封闭的边界。聚集在白洞内部的物质,只可以向外运动,而不能向内部运动。因此,白洞可以向外部区域提供物质和能量,但不能吸收外部区域的任何物质和辐射。白洞是一个强引力源,其外部引力性质与黑洞相同。白洞可以把它周围的物质吸积到边界上形成物质层。白洞学说主要用来解释一些高能天体现象。目前天文学家还没有实际找到白洞,还只是个理论上的名词。白洞是理论上通过对黑洞的类比而得到的一个十分“学者化”的理论产物。 和黑洞完全不一样,白洞不会吸收任何物体,相反的,白洞会不断释放出物质,包括基本粒子和场。 白洞和黑洞一样,有一个“视界”。不过和黑洞不一样,时空曲率在这里是负无穷大,也就是说,在这里,白洞对外界的斥力达到无穷大,即使是光笔直向白洞的奇点冲去,它也会在白洞的视界上完全停止住,不可能进入白洞一步。 理论上,白洞也可以根据是否旋转,是否带有电荷分类,但是理论物理学家们认为,白洞的无穷大的斥力会迫使白洞不带有任何电荷,因为电荷很容易就被赶到了视界外。而旋转,也被认为是不可能的。不过白洞看来只可能是一种想象中的产物。因为如果白洞不吸收任何物体而仅仅是喷射物质,那么无论这个白洞的质量有多大,它的物质也会很快地被喷射光。 当然,物理学家们也为白洞提供了几个存在的想法,其中有的人认为白洞和黑洞通过虫洞连接。关于这种机制,可以参考关于“时间虫洞”的概述。 [编辑本段] 提出过程 黑洞作为一个展终极,必然引致另一个终极,就是白洞.其实膨胀的大爆宇宙论中,早就碰到了原初火球的奇点问题,这个问题其实一直困扰着科学家们.这个奇点的最大质量与密度和黑洞的奇点是相似的,但他们的活动机制却恰恰相反.高能量密物质的现,显示黑洞存在的可能,自然也显示白洞存在的可能.如果宇宙物质按不同的路径和时间走到终极,那么也可能按不同的时间和路径从原始出,亦即在大爆之初的大白洞生后,仍可能出现小爆小白洞.而且,流入黑洞的物质命运究竟如何呢是永远累积在无穷小的奇点中,直到宇宙毁灭,还是在另一个宇宙涌出呢? 2o世纪6o年代以来,由于空间探测技术在天文观测中的广泛应用,人们陆陆续续现了许多高能天体物理现象,例如宇宙x射线爆、宇宙γ射线爆、新星爆、星系核的活动和爆以及类星体、脉冲星,等等。 这些高能天体物理现象用人们已知的物理学规律已经无法解释。就拿类星体来说吧,类星体的体积与一般恒星相当,而它的亮度却比普通星系还亮。类星体这种个头小、亮度大的独特性质,是人们从未见到过的,这就使科学家们想到类星体很可能是一种与人们已知的任何天体都迥然不同的天体。 如何解释类星体现象呢?科学家们提出了各种各样的理论模型。前苏联的诺维柯夫和以色列的尼也曼提出的白洞模型,引起了大家的注意。白洞概念就这样问世了。 如果黑洞从有到无,那白洞就应从无到有。6o年代的苏联科学家开始提出白洞的概念,科学家做了很多工作,但这概念不像黑洞这么通行,看来白洞似乎更虚幻了。问题是我们已经对引力场较为熟悉,从恒星、星系演化为黑洞有数理可循,但白洞靠什么来触,目前却依然茫然无绪。无论如何宇宙至少触过一次,所以白洞的研究显然与宇宙起源的研究更有密切的关系,因而白洞学说通常与宇宙学及结合起来。人们努力的方向不在于黑白洞相对的哲学辩论,而在于它的物理机制问题。从现有状态去推求终末,总容易些,相反的从现有状态去探索原始,难免茫无头绪。 有人认为,类星体的核心就可能是一个白洞。当白洞内中心点附近所聚集的密态物质向外喷射时,就会同它周围的物质生猛烈碰撞,而释放出巨大的能量。因此,有些x射线、宇宙线、射电爆、射电双源等现象,可能与白洞的这种效应有关。白洞目前还只是一种理论模型,尚未被观测所证实。 [编辑本段] 起源以及争论 白洞学说出现已有一段时间,197o年捷尔明便提出它们存于类星体,剧烈活动的星系中的可能性。相对论和宇宙论学者早已明白此学说的可能性,只是这与一般正统的宇宙观不同,较不易获得承认。某些理论认为,由于宇宙物体的激烈运动,或者星系一部喷出的高能小物体,它们遵守着克卜勒轨道运动。这是一种高度理想化的推测,亦即一个地方有几个白洞,在星系核心互相旋转,偶然喷出满天星斗。喷出的白洞演化成新星系。而从星系团的照片中可观察到一系列的星系由物质连接起来。这显示它们是由一连串剧烈喷射所形成的.照此来说,白洞可能会像阿米巴原虫一样分裂生殖,由分裂而形成星系。然而这又和目前的理论相违背。 从此看来,就是星系生成也有不同见解。有的天文学家便提出并接受宇宙之初便有不均匀物质的结块,而其中便包含了白洞。宇宙向最初奇点收缩,星系、星系群都同一动作,这当然和黑洞的奇点相似。宇宙的不同区域,其密度皆不同,收缩时先在高密度的地方,达到了黑洞的临界密度,从此消失在事界之后,宇宙不断收缩,使不断出现高密奇点。宇宙成为大量黑洞及周围物质的集合体。然而事实上,宇宙是膨胀而非收缩的,因此它是白洞而不是黑洞。在宇宙整体性源始的大奇点中存在着密度高的小质点,它们随着膨胀向四面八方扩散,大白洞大量爆生出小白洞。星系等不均匀物体,正是由它生成的。不均匀物体之所以易和黑洞拉上关系,皆是因为它和膨胀现状相对称的宇宙中局部收缩的过程。目前宇宙中黑洞和白洞的存在是并行不悖的,是过程的两个端点而已。黑洞奇点是物质末期塌缩的终点,白洞物质的奇点是星系的始端。只不过各过程不是同时,而是先后交错的。 科学家们普遍认为,自从大爆炸以来,我们的宇宙在不断膨胀,密度在不断减少。因此,现在正在膨胀着的天体和气体乃至整个宇宙,在2oo多亿年以前,是被禁锢在一个“点”(流出奇点)上,原始大爆炸后,开始向外膨胀,当它们冲出“视界”的外面,就成为我们看得见的白洞。 与上述相反的一种观点认为,由于原始大爆炸的不均匀性,一些尚未来得及爆炸的致密核心可能遗留下来,它们被抛出以后仍具有爆炸的趋势,不过爆炸的时间推迟了,这些推迟爆的核心----“延迟核”就是白洞。 也有人认为,白洞可能是黑洞“转化”而来。就是说,当黑洞的坍缩到了“极限”,就会经过内部某种矛盾运动质变为膨胀状态----反坍缩爆炸,这时它便由向内积吸能量,转变为从中心向外辐射能量了。 最富吸引力的一种观点认为,像宇宙中有正负粒子一样,宇宙中也一定存在着与黑洞(负洞)相同,而性质相反的白洞(正洞)。它们对应地共生在某个宇宙膨胀泡的泡壁上,分属两个不同的宇宙。 由于我们的宇宙中存在着1o万多个黑洞,同样也可能存在着数目相等的白洞。于是,在宇宙继续膨胀过程中,白洞周围一些质量稍许密集区域就变得更加密集;黑洞周围的一些质量稍微稀薄的区域就变得更加空虚。这些大片空虚的区域就是空洞. [编辑本段] 白洞的喷 辐射若是由白洞产生,这现象就很自然了。辐射能愈高,蓝移也愈大,所以最初可见光也都移到紫外区了.他还计算了银河系中偶然的小规模爆现象,说明了银河内小白洞随时爆的可能性.例如短期间活动的银河内x-ray,剧烈的最高能量最先到达,其后能量下降,整体按幕函数递减在光谱中显示出来.这和白洞理论计算是一致的.各x-ray之间,光谱不尽相同,不过这差异可从白洞对自己产生的电磁辐射产生畸变说明.因为白洞内产生的辐射可能有黑体辐射(微波以下噪音),自由--自由辐射(带电粒子间相互作用产生),同步辐射(带电粒子在强磁中通过而产生)等不同形态.人造卫星偶然观测到的突r射线,可以白洞影响说明;宇宙射线背景高能粒子的生成,也可以认定是白洞喷的物体。但是一个天体的引力会大过天体的斥力,那白洞喷的一切东西又会被吸回白洞里才对。 [编辑本段] 宇宙中真的有白洞存在吗 到目前为止,“白洞”还只是个理论名词,科学家并未实际现。在技术上,要现黑洞,甚至巨质量黑洞,都比现白洞要容易的多。也许每一个黑洞都有一个对应的白洞!但我们并不确定是否所有的巨质量的“洞”都是“黑”洞,也不确定白洞与黑洞是否应成对出现。但就重力的观点来看,在远距离观察时两者的特性则是相同的。 当人们有了很复杂的数学工具来分析这些相关方程式,他们现了更多。在这个简单的情形下时空结构必须具备时间反演对称性,这意味着如果你让时间倒流,所有一切都应该没什么两样。因此如果在未来某个时刻光只能进不能出,那过去一定有个时刻光只能出不能进。这看上去就像是黑洞的反转,因此人们称之为白洞,虽然它只是黑洞在过去的一个延伸。(更奇怪的是:在世界里面似乎应该还有一个宇宙,虽然这里用“里面”可能不太确切。)时间在白洞里面是存在的,但既然你不能进去,那你只有出生在里面才能知道了。 但在现实中,白洞可能并不存在,因为真实的黑洞要比这个广义相对论的简单解所描述的要复杂得多。他们并不是在过去就一直存在,而是在某个时间恒星坍塌后所形成的。这就破坏了时间反演对称性,因此如果你顺着倒流的时光往前看,你将看不到这个解中所描述的白洞,而是看到黑洞变回坍塌中的恒星。 我们知道,由于黑洞拥有极强的引力,能将附近的任何物体一吸而尽,而且只进不出。如果,我们将黑洞当成一个“入口”,那么,应该就有一个只出不进的“出口”,就是所谓的“白洞”。黑洞和白洞间的通路,也有个专有名词,叫做“灰道”(即“虫洞”)。虽然白洞尚未现,但在科学探索上,最美的事物之一就是许多理论上存在的事物后来真的被人们现或证实。因此,也许将来有一天,天文学家会真的现白洞的存在。 [编辑本段] 与黑洞的关系 白洞与黑洞是相辅相成的,是对立统一的。沈葹在《黑洞、白洞交相衬映》一文中对黑洞与白洞的相互关系作了如下论述:“霍金着眼于黑洞,但他的假说或可给予黑洞、白洞相互转化之设想以便宜。当然此设想主要还是出于黑洞、白洞之对称性的思考;因为物质坍缩成一个中心奇点、与物质从一个中心奇点里爆出来,本是相反相成的两个过程,所以从黑洞瞬即转化成白洞,似乎还是可能实现的。对于宇宙演化,我们且作如下尝试性解释。从广义相对论演绎得出的一种演化模式,把宇宙假设为从原始火球的大爆炸中诞生,接着便膨胀,胀到最大,再转变成坍缩,缩到最小;尔后又生第二次爆炸及其胀、缩过程;如此循环反复。对此模式,可否把每次爆炸的原始火球看作为一个原始白洞,而它是上一次坍缩过程的终止黑洞瞬即转化来的。起始点和终止点就是这白洞和黑洞的中心奇点。”这段论述包含了深刻的辩证逻辑思想。 根据上述情况,可以得出以下结论: 第一,黑洞是宇宙间吸引的一种极端现象和形式,它的直接结果是“大坍缩”,与之相反,白洞则是宇宙间排斥的一种极端现象和形式,它的直接结果是“大爆炸”或“大膨胀”。两者缺一不可,紧密相联,相辅相成,相互转化,对立统一。 第二,黑洞与白洞是通过某种“极变机制”(虫眼机制等)相互转化的,由于这种相互转化的存在,使得量子阶梯中的所有物质现象得以产生、展和消亡。在这个过程中,既没有一成不变的永恒事物,也没有只出现一次就永远绝灭的东西。产生了的东西会消亡,消亡了的东西又会产生,如此循环不止。 第三,黑洞与白洞的相互转化是宇宙演化最根本、最重要的动力根源。它们两者的存在和转化,是“吸引和排斥这一个古老的两极对立”的生动体现,是万物变化最深层次的总根源。 黑洞就象宇宙中的一个无底深渊,物质一旦掉进去,就再也逃不出来。根据我们熟悉的“矛盾”的观点,科学家们大胆地猜想到:宇宙中会不会也同时存在一种物质只出不进的“泉”呢?并给它取了个同黑洞相反的名字,叫“白洞”。 科学家们猜想:白洞也有一个与黑洞类似的封闭的边界,但与黑洞不同的是,白洞内部的物质和各种辐射只能经边界向边界外部运动,而白洞外部的物质和辐射却不能进入其内部。形象地说,白洞好像一个不断向外喷射物质和能量的源泉,它向外界提供物质和能量,却不吸收外部的物质和能量。 白洞到目前为止,还仅仅是科学家的猜想,还没有观察到任何能表明白洞可能存在的证据。在理论研究上也还没有重大突破。不过,最新的研究可能会得出一个令人兴奋的结论,即:“白洞”很可能就是“黑洞”本身!也就是说黑洞在这一端吸收物质,而在另一端则喷射物质,就像一个巨大的时空隧道。 科学家们最近证明了黑洞其实有可能向外射能量。而根据现代物理理论,能量和质量是可以互相转化的。这就从理论上预言了“黑洞、白洞一体化”的可能。 要彻底弄清楚黑洞和白洞的奥秘,现在还为时过早。但是,科学家们每前进一点,所取得的成绩都让人激动不已。我们相信,打开宇宙之谜大门的钥匙就藏在黑洞和白洞神秘的身后。 与黑洞相遇会如何 有科学家猜测白洞与黑洞相撞会形成虫洞。虫洞连接黑洞和白洞,在黑洞与白洞之间传送物质。在这里,虫洞成为一个阿尔伯特·爱因斯坦--罗森桥,物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即阿尔伯特·爱因斯坦--罗森桥)被传送到白洞并且被辐射出去。 虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特·爱因斯坦的思想实验,现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。 那么,“虫洞”是什么呢?简单地说,“虫洞”是连接宇宙遥远区域间的时空细管。它可以把平行宇宙和婴儿宇宙连接起来,并提供时间旅行的可能性。随着科学技术的展,新的研究现,“虫洞”的强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。 宇航学家认为,“虫洞”的研究虽然刚刚起步,但是它潜在的回报,不容忽视。科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置。现在,人类被“困”在地球上,要航行到最近的一个星系,动辄需要数百年时间,是目前人类不可能办到的。但是,未来的太空航行如使用“虫洞”,那么一瞬间就能到达宇宙中遥远的地方。 白洞形成之谜 关于白洞是怎样形成的,目前科学家们持有两种不同的见解。 一种得到多数天文学家赞同的观点认为,当宇宙诞生的那一时刻,即当宇宙由原初极高密度、极高温度状态开始大爆炸时,由于爆炸的不完全和不均匀,可能会遗留下一些高密度的物质暂时尚未爆炸,而是要再等待一定的时间以后才开始膨胀和爆炸,这些遗留下来的致密物质即成为新的局部膨胀的核心,也就是白洞。 有些致密物质核心的爆炸时间已经延迟了大约1oo亿年或2oo亿年(这要看宇宙的年龄是1oo亿年还是2oo亿年,而宇宙年龄目前也是一个未解之谜)。它们的爆炸,就导致了我们今天所观测到的宇宙中各种高能天体物理现象。为此,白洞又有“延迟核”之称。按照延迟核理论,1oo亿或2oo亿年之前,我们的宇宙就是一个巨大的白洞。 除了延迟核理论之外,另一种观点认为,白洞可直接由黑洞转变过来,白洞中的高密度物质是由引力坍缩形成黑洞时获得的。 传统的黑洞理论认为,黑洞只有绝对的吸引而不向外界射任何物质和辐射。7o年代,有一位卓越的英国天体物理学家霍金,根据广义相对论和量子力学理论,对黑洞作了进一步的研究,并对传统的黑洞理论作了重大的修正。霍金对黑洞的见解轰动了科学界,他因此获得了1978年的爱因斯坦奖金。 霍金认为,黑洞具有一定的温度,会以类似于热辐射的方式稳定地向外射各种粒子,这就是所谓的“自蒸”。黑洞的蒸度与黑洞的质量有关,质量越大的黑洞,温度越低,蒸得越慢;反之,质量越小的黑洞,温度越高,蒸得越快。譬如,质量与太阳相当的一个黑洞,约需1o^66年才能够完全蒸完,而一些原生小黑洞,却能在1o^(-23)秒之内蒸得一干二净。 黑洞的蒸使黑洞的质量减小,从而使黑洞的温度升高,这样又促使自蒸进一步加剧。这种过程继续下去,黑洞的蒸便会越演越烈,最后以一种“反坍缩”式的猛烈爆而告终。这个过程正好就是不断向外喷射物质的白洞了。 目前,这种白洞是由黑洞直接转变过来的观点,也越来越引起各国科学家们的关注。 由于白洞概念提出之后,用它可以解释一些高能天体物理现象,所以引起了不少天文学家对白洞的兴趣,继而他们也对白洞问题作了一些探讨和研究。 尽管如此,科学家们对白洞的兴趣还远远比不上像对黑洞的兴趣那样浓,对白洞的研究工作也远远比不上像对黑洞的研究那样广泛和深入,并且在观测证认工作方面,也不像黑洞那样取得了很大的进展。 总而言之,白洞学说目前还只是一种科学假说,宇宙中是否真的存在白洞这种天体?白洞是怎样形成的?我们的宇宙在它诞生之前是否就是一个白洞?等等,有关白洞的这一系列问题,还都是等待人们去揭开的宇宙之谜。 白洞与高能天体 既然白洞概念是在解释高能天体物理现象时提出来的,那么白洞与高能天体究竟存在什么联系呢? 白洞是一个物质只出不进的天体,但是,对于外部区域来说,白洞也是一个强引力源。它能把周围的尘埃、气体和各种辐射不断地吸引到它的边界上来,只不过这些物质并不能进入白洞的内部,只能在边界外形成一个包围白洞的物质层。 白洞内部,中心奇点附近所聚集的物质是一种高密态的物质,其中包含各种基本粒子,甚至引力子,并且还聚集着极其巨大的能量。起初,这些物质是处于某种平衡状态,但它们具有向外膨胀的趋势。当由于某种原因引起膨胀时,物质密度就会在膨胀过程中不断降低。降低到某一程度,就会引起粒子的衰变过程,从而将各种高能粒子、光子、中微子等射出来。 从白洞内部射出来的物质都具有很高的度,而被白洞吸引到其边界上的物质也具有很高的度。不难想象,这进进出出,又都是高度,它们在白洞边界上的碰撞该有多么猛烈。随着猛烈的碰撞,必然就会有异常巨大的能量释放出来。 假若类星体或活动星系核的中心有大质量白洞存在的话,那么,它们所释放的巨大能量就可以看成是白洞向外喷射物与其边界上吸积物相互作用的结果。这也就是白洞对高能天体物理现象能源之谜的解释.广义相对论所预言的一种与黑洞相反的特殊天体。和黑洞类似,它也有一个封闭的边界。聚集在白洞内部的物质,只可以向外运动,而不能向内部运动。因此,白洞可以向外部区域提供物质和能量,但不能吸收外部区域的任何物质和辐射。白洞是一个强引力源,其外部引力性质与黑洞相同。白洞可以把它周围的物质吸积到边界上形成物质层。”白洞”学说主要用来解释一些高能天体现象。叫白洞现象。 有人认为,类星体的核心就可能是一个白洞。当白洞内中心点附近所聚集的密态物质向外喷射时,就会同它周围的物质生猛烈碰撞,而释放出巨大的能量。因此,有些x射线、宇宙线、射电爆、射电双源等现象,可能与白洞的这种效应有关。白洞目前还只是一种理论模型,尚未被观测所证实。 &1t;ahref=.>. 22章:河外星系与银河系通道虫洞 虫洞示意图 由阿尔伯特·爱因斯坦提出该理论。简单地说,“虫洞”就是连接宇宙遥远区域间的时空细管。暗物质维持着虫洞出口的敞开。虫洞可以把平行宇宙和婴儿宇宙连接起来,并提供时间旅行的可能性。虫洞也可能是连接黑洞和白洞的时空隧道,所以也叫”灰道”。 简介 早在19世纪5o年代,已有科学家对“虫洞”作过研究,由于当时历史条件所限,一些物理学家认为,理论上也许可以使用“虫洞”,但“虫洞”的引力过大,会毁灭所有进入的东西,因此不可能用在宇宙航行上。 假如说大家都在一个长方形的广场上,左上角设为a,右上角设为b,右下角设为c,左下角设为d。假设长方形的广场上全是建筑物,你的起点是c,终点是a,你无法直接穿越建筑物,那么只能从c到b,再从b到a。再假设假如长方形的广场上什么建筑物都没了,那么你可以直接从c到a,这是对于平面来说最近的路线。但是假如说你进入了一个虫洞,你可以直接从c到a,连原本最短到达的距离也不需要了。这就是所谓的虫洞。但是由于虫洞引力过大,人无法通过虫洞来实现“瞬间移动”的可能。 随着科学技术的展,新的研究现,“虫洞”的强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。 据美国华盛顿大学物理系研究人员的计算,“负质量”可以用来控制“虫洞”。他们指出,“负质量”能扩大原本细小的“虫洞”,使它们足以让太空飞船穿过。他们的研究结果引起了各国航天部门的极大兴趣,许多国家已考虑拨款资助“虫洞”研究,希望“虫洞”能实际用在太空航行上。 宇航学家认为,“虫洞”的研究虽然刚刚起步,但是它潜在的回报,不容忽视。科学家认为,如果研究成功,人类可能需要重新估计自己在宇宙中的角色和位置。现在,人类被“困”在地球上,要航行到最近的一个星系,动辄需要数百年时间,是目前人类不可能办到的。但是,未来的太空航行如使用“虫洞”,那么一瞬间就能到达宇宙中遥远的地方。 据科学家猜测,宇宙中充斥着数以百万计的“虫洞”,但很少有直径过1o万公里的,而这个宽度正是太空飞船安全航行的最低要求。“负质量”的现为利用“虫洞”创造了新的契机,可以使用它去扩大和稳定细小的“虫洞”。 科学家指出,如果把“负质量”传送到“虫洞”中,把“虫洞”打开,并强化它的结构,使其稳定,就可以使太空飞船通过。 虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特.爱因斯坦的思想实验,现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。 自从在史瓦西解中现了虫洞,物理学家们就开始对虫洞的性质生了兴趣。 虫洞连接黑洞和白洞,在黑洞与白洞之间传送物质。在这里,虫洞成为一个阿尔伯特.爱因斯坦--罗森桥,物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即阿尔伯特.爱因斯坦--罗森桥)被传送到白洞并且被辐射出去。 虫洞还可以在宇宙的正常时空中显现,成为一个突然出现的时空管道。 虫洞没有视界,它只有一个和外界的分界面,虫洞通过这个分界面进行时空连接。虫洞与黑洞、白洞的接口是一个时空管道和两个时空闭合区的连接,在这里时空曲率并不是无限大,因而我们可以安全地通过虫洞,而不被巨大的引力摧毁。理论推出的虫洞还有许多特性,限于篇幅,这里不再赘述。 黑洞、白洞、虫洞仍然是目前宇宙学中“时空与引力篇章”的悬而未解之谜。黑洞是否真实存在,科学家们也只是得到了一些间接的旁证。当前的观测及理论也给天文学和物理学提出了许多新问题,例如,一颗能形成黑洞的冷恒星,当它坍缩时,其密度已然会过原子核、核子、中子……,如果再继续坍缩下去,中子也可能被压碎。那么,黑洞中的物质基元究竟是什么呢?有什么斥力与引力对抗才使黑洞停留在某一阶段而不再继续坍缩呢?如果没有斥力,那么黑洞将无限地坍缩下去,直到体积无穷小,密度无穷大,内部压力也无穷大,而这却是物理学理论所不允许的。 总之,目前我们对黑洞、白洞和虫洞的本质了解还很少,它们还是神秘的东西,很多问题仍需要进一步探讨。目前天文学家已经间接地找到了黑洞,但白洞、虫洞并未真正现,还只是一个经常出现在科幻作品中的理论名词。 虫洞也是霍金构想的宇宙期存在的一种极细微的洞穴。美国科学家对此做了深入的研究。目前的宇宙中,“宇宙项”几乎为零。所谓的宇宙项也称为“真空的能量”,在没有物质的空间中,能量也同样存在其内部,这是由爱因斯坦所导入的。宇宙初期的膨胀宇宙,宇宙项是必须的,而且,在基本粒子论里,也认为真空中的能量是自然呈现的。那么,为何目前宇宙的宇宙项变为零呢?柯尔曼说明:在爆炸以前的初期宇宙中,虫洞连接着很多的宇宙,很巧妙地将宇宙项的大小调整为零。结果,由一个宇宙可能产生另一个宇宙,而且,宇宙中也有可能有无数个这种微细的洞穴,它们可通往一个宇宙的过去及未来,或其他的宇宙。 旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。 最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。贯穿虫洞的辐射(来自附近的恒星,宇宙的微波背景等等)将蓝移到非常高的频率。当你试着穿越虫洞时,你将被这些x射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。 物理学家一直认为,虫洞的引力过大,会毁灭所有进入它的东西,因此不可能用在宇宙旅行之上。但是,假设宇宙中有虫洞这种物质存在,那么就可以有一种说法:如果你于12:oo站在虫洞的一端(入口),那你就会于12:oo从虫洞的另一端(出口)出来。 黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的加强,它还是仅仅是一个连通的“宇宙监狱”。 虫洞(黑洞)原理图 虫洞原理图从a到b的最短距离是这样吗?还有更短的路程哦 关于虫洞的理论 虫洞有几种说法 一是空间的隧道,就像一个球,你要沿球面走就远了但如果你走的是球里的一条直径就近了,虫洞就是直径 二是黑洞与白洞的联系。黑洞可以产生一个势阱,白洞则可以产生一个反势阱。宇宙是三维的,将势阱看作第四维,那么虫洞就是连接势阱和反势阱的第五维。假如画出宇宙、势阱、反势阱和虫洞的图像,它就像一个克莱因瓶----瓶口是黑洞,瓶身和瓶颈的交界处是白洞,瓶颈是虫洞。 三是你说的时间隧道,根据爱因斯坦所说的你可以进行时间旅行,但你只能看,就像看电影,却无法改变生的事情,因为时间是线行的,事件就是一个个珠子已经穿好,你无法改变珠子也无法调动顺序 到现在为止,我们讨论的都是普通“完美”黑洞。细节上,我们讨论的黑洞都不旋转也没有电荷。如果我们考虑黑洞旋转同时/或者带有电荷,事情会变的更复杂。特别的是,你有可能跳进这样的黑洞而不撞到奇点。结果是,旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。 白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。 但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。先,虫洞几乎不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。 还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。 在史瓦西现了史瓦西黑洞以后,理论物理学家们对爱因斯坦常方程的史瓦西解进行了几乎半个世纪的探索。包括上面说过的克尔解、雷斯勒----诺斯特朗姆解以及后来的纽曼解,都是围绕史瓦西的解研究出来的成果。我在这里将介绍给大家的虫洞,也是史瓦西的后代。 虫洞在史瓦西解中第一次出现,是当物理学家们想到了白洞的时候。他们通过一个爱因斯坦的思想实验,现时空可以不是平坦的,而是弯曲的。在这种情况下,我们会十分的现,如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方是与原来的时空完全垂直的。在不是平坦的宇宙时空中,这种结构就以为着黑洞的视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,叫史瓦西喉,也就是一种特定的虫洞。 自从在史瓦西解中现了虫洞,物理学家们就开始对虫洞的性质感到好奇。 我们先来看一个虫洞的经典作用:连接黑洞和白洞,成为一个爱因斯坦----罗森桥,将物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即爱因斯坦----罗森桥)被传送到这个白洞的所在,并且被辐射出去。当然,前面说的仅仅是虫洞作为一个黑洞和白洞之间传送物质的道路,但是虫洞的作用远不只如此。 黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的将强,它还是仅仅是一个连通的“宇宙监狱”。 虫洞不仅可以作为一个连接洞的工具,它还在宇宙的正常时空中出现,成为一个突然出现在宇宙中的空间管道。 虫洞没有视界,它有的仅仅是一个和外界的分解面。虫洞通过这个分解面和空间连接,但是在这里时空曲率不是无限大。就好比在一个在平面中一条曲线和另一条曲线相切,在虫洞的问题中,它就好比是一个四维管道和一个三维的空间相切,在这里时空曲率不是无限大。因而我们现在可以安全地通过虫洞,而不被巨大的引力所摧毁。 爱因斯坦----罗森桥是一个把两个遥远区域连接起来的虫洞,但它们不能保持畅通足够久,以使任何东西通过。在航天飞船穿过虫洞之前它缩小断裂,会形成两个分离的奇点。飞船会撞到奇点上去 虫洞的性质 那么虫洞都有些什么性质呢? 利用相对论在不考虑一些量子效应和除引力以外的任何能量的时候,我们得到了一些十分简单、基本的关于虫洞的描述。这些描述十分重要,但是由于我们研究的重要是黑洞,而不是宇宙中的洞,因此我在这里只简单介绍一下虫洞的性质,而对于一些相关的理论以及这些理论的描述,这里先不涉及。 虫洞有些什么性质呢?最主要的一个,是相对论中描述的,用来作为宇宙中的高火车。但是,虫洞的第二个重要的性质,也就是量子理论告诉我们的东西又明确的告诉我们:虫洞不可能成为一个宇宙的高火车。虫洞的存在,依赖于一种奇异的性质和物质,而这种奇异的性质,就是负能量。只有负能量才可以维持虫洞的存在,保持虫洞与外界时空的分解面持续打开。当然,狄拉克在芬克尔斯坦参照系的基础上,现了参照系的选择可以帮助我们更容易或者难地来分析物理问题。同样的,负能量在狄拉克的另一个参照系中,是非常容易实现的,因为能量的表现形式和观测物体的度有关。这个结论在膜规范理论中同样起到了十分重要的作用。根据参照系的不同,负能量是十分容易实现的。在物体以近光接近虫洞的时候,在虫洞的周围的能量自然就成为了负的。因而以接近光的度可以进入虫洞,而度离光太大,那么物体是无论如何也不可能进入虫洞的。这个也就是虫洞的特殊性质之一。 但是虫洞并没有这么太平。前面说的是在安静的相对论中的虫洞,在暴躁的量子理论中,虫洞的性质又有了十分重要的变化。 我们先来看在黑洞中的虫洞,也就是史瓦西喉和奇点周围形成的子宇宙。 黑洞周围的量子真空涨落在黑洞巨大引力的作用下,会被黑洞的引力能“喂”大,成为十分的能量辐射。这种能量会毫不留情地将一切形式的虫洞摧毁。 在没有黑洞包围的虫洞中,由于同样的没有黑洞巨大引力的“喂养”,虫洞本身也不可能开启太久。虫洞有很大几率被随机打开,但是有更大的几率突然消失。虫洞打开的时间十分短,仅仅是几个普朗克时间。在如此短的“寿命”中,即使是光也不可能走完虫洞的一半旅途,而在半路由于虫洞的消失而在整个时空中消失,成为真正的四维时空组旅行者。 而且,在没有物体通过虫洞的时候,虫洞还比较“长寿”,而一旦有物体进入了虫洞,如果这个物体是负能量的,那么还好,虫洞会被撑开;但是如果物体是正能量的,那么虫洞会在自己“自然死亡”以前就“灭亡”掉。而在宇宙中,几乎无时无刻不存在能量辐射通过宇宙的每一个角落,而这些辐射都是正能量的,因此几乎可以肯定,在自然情况下是不存在虫洞的。 旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。 白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。 但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。先,虫洞几乎可以肯定不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。 还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。 最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。贯穿虫洞的辐射(来自附近的恒星,宇宙的微波背景等等)将蓝移到非常高的频率。当你试着穿越虫洞时,你将被这些x射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。 虫洞的自然生产机制 虫洞的自然产生机制有两种: 其一,是黑洞的强大引力能; 其二,是克尔黑洞的快旋转,其伦斯----梯林效应将黑洞周围的能层中的时空撕开一些小口子。这些小口子在引力能和旋转能的作用下被击穿,成为一些十分小的虫洞。这些虫洞在黑洞引力能的作用下,可以确定它们的出口在那里,但是现在还不可能完全完成,因为量子理论和相对论还没有完全结合。 个人假设 i、虫洞像河流,通过的物体像船,船顺河而下; 虫洞体像一个圆柱形磁铁,强力的类磁力线在入口处将通过的物体分解,以波的形式在柱心管道运行,在出口处还原。通过的物体类似一个障碍,造成波的某一部分形变,然后这个形变推移到出口。 可能还涉及到横波、纵波,波的反射、折射、衍射,物质的不均匀、空间的不规则,如同水中气泡般的宇宙空洞。 &1t;ahref=.>. 23章:河外星系与银河系虫洞 2 虫洞:旅行家的天堂还是探险者的地狱?一.星空,最后的前沿 探索星空是人类一个恒久的梦想。在晴朗的夜晚,每当我们仰起头来,就会看到满天的繁星。自古以来,星空以它无与伦比的浩瀚、深邃、美丽及神秘激起着人类无数的遐想。著名的美国科幻电视连续剧《星际旅行》(startrek)中有这样一句简短却意味无穷的题记:星空,最后的前沿(spanettier)[注一]。当我第一次观看这个电视连续剧的时候,这句用一种带有磁性的话外音念出的题记给我留下了令人神往的印象。 在远古的时候,人类探索星空的方式是肉眼,后来开始用望远镜,但人类迈向星空的第一步则是在一九五七年。那一年,人类射的第一个航天器终于飞出了我们这个蓝色星球的大气层。十二年后,人类把足迹留在了月球上。三年之后,人类向外太阳系射了先驱者十号深空探测器。一九八三年,先驱者十号飞离了海王星轨道,成为人类射的第一个飞离太阳系的航天器[注二]。 从人类射第一个航天器以来,短短二十几年的时间里,齐奥尔科夫斯基所预言的“人类先将小心翼翼地穿过大气层,然后再去征服太阳周围的整个空间”就成为了现实,人类探索星空的步履不可谓不迅。但是,相对于无尽的星空而言,这种步履依然太过缓慢。率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着,在满天的繁星之中,要经过多少年它才能飞临下一颗恒星呢?答案是两百万年!那时它将飞临距离我们六十八光年的金牛座(taurus)[注三]。六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的,但是相对于远在三万光年之外的银河系中心,远在两百二十万光年之外的仙女座大星云,远在六千万光年之外的室女座星系团,以及更为遥远的其它天体来说无疑是微不足道的。人类的好奇心是没有边界的,可是即便人类航天器的度再快上许多倍,甚至接近物理度的上限-光,用星际空间的距离来衡量依然是极其缓慢的。 那么,有没有什么办法可以让航天器以某种方式变相地突破度上限,从而能够在很短的时间内跨越那些近乎无限的遥远距离呢?科幻小说家们率先展开了想象的翅膀。 二.旅行家的天堂 一九八五年,美国康乃尔大学(netety)的著名行星天文学家卡尔.萨根(net)写了一部科幻小说,叫做《接触》(nettact)。萨根对探索地球以外的智慧生物有着浓厚的兴趣,他客串科幻小说家的目的之一是要为寻找外星智慧生物的seti计划筹集资金。他的这部小说后来被拍成了电影,为他赢得了广泛的知名度。 萨根在他的小说中叙述了一个动人的故事:一位名叫艾丽(e11ie)的女科学家收到了一串来自外星球智慧生物的电波信号。经过研究,她现这串信号包含了建造一台特殊设备的方法,那台设备可以让人类与信号的送者会面。经过努力,艾丽与同事成功地建造起了这台设备,并通过这台设备跨越了遥远的星际空间与外星球智慧生物实现了第一次接触。 但是,艾丽与同事按照外星球智慧生物提供的方法建造出的设备究竟利用了什么方式让旅行者跨越遥远的星际空间的呢?这是萨根需要大胆“幻想”的地方。他最初的设想是利用黑洞。但是萨根毕竟不是普通的科幻小说家,他的科学背景使他希望自己的科幻小说尽可能地不与已知的物理学定律相矛盾。于是他给自己的老朋友,加州理工大学(netstituteofteneto1ogy)的索恩(kips.thorne)教授打了一个电话。索恩是研究引力理论的专家,萨根请他为自己的设想做一下技术评估。索恩经过思考及粗略的计算,很快告诉萨根黑洞是无法作为星际旅行的工具的,他建议萨根使用虫洞(ormho1e)这个概念。据我所知,这是虫洞这一名词第一次进入科幻小说中[注四]。在那之后,各种科幻小说、电影、及电视连续剧相继采用了这一名词,虫洞逐渐成为了科幻故事中的标准术语。这是科幻小说家与物理学家的一次小小交流结出的果实。 萨根与索恩的交流不仅为科幻小说带来了一个全新的术语,也为物理学开创了一个新的研究领域。在物理学中,虫洞这一概念最早是由米斯纳(neter)与惠勒(j.a.hee1er)于一九五七年提出的,与人类射第一个航天器恰好是同一年。那么究竟什么是虫洞?它又为什么会被科幻小说家视为星际旅行的工具呢?让我们用一个简单的例子来说明:大家知道,在一个苹果的表面上从一个点到另一个点需要走一条弧线,但如果有一条蛀虫在这两个点之间蛀出了一个虫洞,通过虫洞就可以在这两个点之间走直线,这显然要比原先的弧线来得近。把这个类比从二维的苹果表面推广到三维的物理空间,就是物理学家们所说的虫洞,而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因[注五]。只要存在合适的虫洞,无论多么遥远的地方都有可能变得近在咫尺,星际旅行家们将不再受制于空间距离的遥远。在一些科幻故事中,技术水平高度达的文明世界利用虫洞进行星际旅行就像今天的我们利用高公路在城镇间旅行一样。在著名的美国科幻电影及电视连续剧《星际之门》(stargate,港台译星际奇兵)中人类利用外星文明留在地球上的一台被称为“星际之门”的设备可以与其它许多遥远星球上的“星际之门”建立虫洞连接,从而能够几乎瞬时地把人和设备送到那些遥远的星球上。虫洞成为了科幻故事中星际旅行家的天堂。 不过米斯纳与惠勒所提出的虫洞是极其微小的,并且在极短的时间内就会消失,无法成为星际旅行的通道。萨根的小说表之后,索恩对虫洞产生了浓厚的兴趣,并和他的学生莫里斯(mikemorris)开始对虫洞作深入的研究。与米斯纳和惠勒不同的是,索恩感兴趣的是可以作为星际旅行通道的虫洞,这种虫洞被称为可穿越虫洞(traversab1eormho1e)。 三.负能量物质 那么什么样的虫洞能成为可穿越虫洞呢?一个要的条件就是它必须存在足够长的时间,不能够没等星际旅行家穿越就先消失。因此可穿越虫洞先必须是足够稳定的。一个虫洞怎样才可以稳定存在呢?索恩和莫里斯经过研究现了一个不太妙的结果,那就是在虫洞中必须存在某种能量为负的奇特物质!为什么会有这样的结论呢?那是因为物质进入虫洞时是向内汇聚的,而离开虫洞时则是向外飞散的,这种由汇聚变成飞散的过程意味着在虫洞的深处存在着某种排斥作用。由于普通物质的引力只能产生汇聚作用,只有负能量物质才能够产生这种排斥作用。因此,要想让虫洞成为星际旅行的通道,必须要有负能量的物质。索恩和莫里斯的这一结果是人们对可穿越虫洞进行研究的起点。 索恩和莫里斯的结果为什么不太妙呢?因为人们在宏观世界里从未观测到任何负能量的物质。事实上,在物理学中人们通常把真空的能量定为零。所谓真空就是一无所有,而负能量意味着比一无所有的真空具有“更少”的物质,这在经典物理学中是近乎于自相矛盾的说法。 但是许多经典物理学做不到的事情在二十世纪初随着量子理论的展却变成了可能。负能量的存在很幸运地正是其中一个例子。在量子理论中,真空不再是一无所有,它具有极为复杂的结构,每时每刻都有大量的虚粒子对产生和湮灭。一九四八年,荷兰物理学家卡什米尔(hendrikcasimir)研究了真空中两个平行导体板之间的这种虚粒子态,结果现它们比普通的真空具有更少的能量,这表明在这两个平行导体板之间出现了负的能量密度!在此基础上他现在这样的一对平行导体板之间存在一种微弱的相互作用。他的这一现被称为卡什米尔效应。将近半个世纪后的一九九七年,物理学家们在实验上证实了这种微弱的相互作用,从而间接地为负能量的存在提供了证据。除了卡什米尔效应外,二十世纪七八十年代以来,物理学家在其它一些研究领域也先后现了负能量的存在。 因此,种种令人兴奋的研究都表明,宇宙中看来的确是存在负能量物质的。但不幸的是,迄今所知的所有这些负能量物质都是由量子效应产生的,因而数量极其微小。以卡什米尔效应为例,倘若平行板的间距为一米,它所产生的负能量的密度相当于在每十亿亿立方米的体积内才有一个(负质量的)基本粒子!而且间距越大负能量的密度就越小。其它量子效应所产生的负能量密度也大致相仿。因此在任何宏观尺度上由量子效应产生的负能量都是微乎其微的。 另一方面,物理学家们对维持一个可穿越虫洞所需要的负能量物质的数量也做了估算,结果现虫洞的半径越大,所需要的负能量物质就越多。具体地说,为了维持一个半径为一公里的虫洞所需要的负能量物质的数量相当于整个太阳系的质量。 如果说负能量物质的存在给利用虫洞进行星际旅行带来了一丝希望,那么这些更具体的研究结果则给这种希望泼上了一盆无情的冷水。因为一方面迄今所知的所有产生负能量物质的效应都是量子效应,所产生的负能量物质即使用微观尺度来衡量也是极其微小的。另一方面维持任何宏观意义上的虫洞所需的负能量物质却是一个天文数字!这两者之间的巨大鸿沟无疑给建造虫洞的前景蒙上了浓重的阴影。 四.探险者的地狱 虽然数字看起来令人沮丧,但是别忘了当我们讨论虫洞的时候,我们是在讨论一个科幻的话题。既然是讨论科幻的话题,我们姑且把眼光放得乐观些。即使我们自己没有能力建造虫洞,或许宇宙间还存在其它文明生物有能力建造虫洞,就象《星际之门》的故事那样。甚至,即使谁也没有能力建造虫洞,或许在浩瀚宇宙的某个角落里存在着天然的虫洞。因此让我们姑且假设在未来的某一天人类真的建造或者现了一个半径为一公里的虫洞。 我们是否就可以利用它来进行星际旅行了呢? 初看起来半径一公里的虫洞似乎足以满足星际旅行的要求了,因为这样的半径在几何尺度上已经足以让相当规模的星际飞船通过了。看过科幻电影的人可能对星际飞船穿越虫洞的特技处理留有深刻的印象。从屏幕上看,飞船周围充斥着由来自遥远天际的星光和辐射组成的无限绚丽的视觉幻象,看上去飞船穿越的似乎是时空中的一条狭小的通道。 但实际情况远比这种幻想来得复杂。事实上为了能让飞船及乘员安全地穿越虫洞,几何半径的大小并不是星际旅行家所面临的主要问题。按照广义相对论,物质在通过象虫洞这样空间结构高度弯曲的区域,会遇到一个十分棘手的问题,那就是张力。这是由于引力场在空间各处的分布不均匀所造成的,它的一种大家熟悉的表现形式就是海洋中的潮汐。由于这种张力的作用,当星际飞船接近虫洞的时候,飞船上的乘员会渐渐感觉到自己的身体在沿虫洞的方向上有被拉伸的感觉,而在与之垂直的方向上则有被挤压的感觉。这种感觉便是由虫洞引力场的不均匀造成的。一开始,这种张力只是使人稍有不适而已,但随着飞船与虫洞的接近,这种张力会迅增加,距离每缩小到十分一,这种张力就会增加约一千倍。当飞船距离虫洞还有一千公里的时候,这种张力已经出了人体所能承受的极限,如果飞船到这时还不赶紧折回的话,所有的乘员都将在致命的张力作用下丧命。再往前飞一段距离,飞船本身将在可怕的张力作用下解体,而最终,疯狂增加的张力将把已经成为碎片的飞船及乘员撕成一长串亚原子粒子。从虫洞另一端飞出的就是这一长串早已无法分辨来源的亚原子粒子! 这就是星际探险者试图穿越半径为一公里的虫洞将会遭遇的结局。半径一公里的虫洞不是旅行家的天堂,而是探险者的地狱。 因此一个虫洞要成为可穿越虫洞,一个很明显的进一步要求就是:飞船及乘员在通过虫洞时所受到的张力必须很小。计算表明,这个要求只有在虫洞的半径极其巨大的情况下才能得到满足[注六]。那么究竟要多大的虫洞才可以作为星际旅行的通道呢?计算表明,半径小于一光年的虫洞对飞船及乘员产生的张力足以破坏物质的原子结构,这是任何坚固的飞船都无法经受的,更遑论脆弱的飞船乘员了。因此,一个虫洞要成为可穿越虫洞,其半径必须远远大于一光年。 一光年是个什么概念呢?它相当于整个太阳系半径(以冥王星轨道为界)的一千五百多倍。如果用地球的线度来衡量的话,它大约是地球直径的七亿倍。因此,科幻电影《星际之门》把虫洞的出入口建在地球及其它行星上是完全不可能的,因为入口如此狭小的虫洞不仅无法让人安全穿越,而且会把周围的一切在瞬息之间撕裂成亚原子粒子。在萨根的故事中,曾有人反对艾丽与同事把外星球智慧生物提供的蓝图付诸实施,因为他们担心那有可能是一个用来毁灭地球的装置。他们的担忧其实是很有道理的。 五.从科幻到现实 但另一方面,一光年用日常的距离来衡量虽然是一个巨大的线度,用星际的距离来衡量,却也不算惊人。我们所在的银河系的线度大约是它的十万倍,假如在银河系与两百二十万光年外的仙女座大星云之间存在一个虫洞的话,从线度上讲它只不过是一个非常细小的通道。那么会不会在我们周围的星际空间中真的存在这样的通道,只不过还未被我们现呢?答案是否定的。因为半径为一光年的虫洞真正惊人的地方不在于它的线度,而在于维持它所需的负能量物质的数量。计算表明,维持这样一个虫洞所需的负能量物质的数量相当于整个银河系中所有光星体质量总和的一百倍!这样的虫洞产生的引力效应将远比整个银河系的引力效应更为显著,如果在我们附近的星际空间中存在这种虫洞的话,周围几百万光年内的物质运动都将受到显著的影响,我们早就从它的引力场中现其踪迹了。 因此不仅在地球上不可能建造可穿越虫洞,在我们附近的整个星际空间中都几乎不可能存在可穿越虫洞而未被现。 这样看来,我们只剩下一种可能性需要讨论了,那就是在宇宙的其它遥远角落里是否有可能存在可穿越虫洞?对于这个问题,我们也许永远都无法确切地知道结果,因为宇宙实在太大了。但是维持可观测虫洞所需的数量近乎于天方夜谭的负能量物质几乎为我们提供了答案。迄今为止,人类从未在任何宏观尺度上现过负能量物质,所有产生负能量物质的实验方法利用的都是微弱的量子效应。为了能够维持一个可穿越虫洞,必须存在某种机制把量子效应所产生的微弱的负能量物质汇集起来,达到足够的数量。但是负能量物质可以被汇聚起来吗?最近十几年来物理学家们在这方面做了一些理论研究,结果表明由量子效应产生的负能量物质是不可能无限制地加以汇聚的。负能量物质汇聚得越多,它所能够存在的时间就会越短。因此一个虫洞没有负能量物质是不稳定的,负能量物质太多了也会不稳定!那么到底什么样的虫洞才能够稳定的呢?初步的计算表明,只有线度比原子的线度还要小二十几个数量级的虫洞才是稳定的[注七]! 这一系列结果无疑是非常冷酷的,如果这些结果成立的话,存在可穿越虫洞的可能性就基本上被排除了,所有那些美丽的科幻故事也就都成了镜花水月。不过幸运(或不幸)的是,上面所叙述的许多结果依据的是目前还比较前沿-因而相对来说也还比较不成熟-的物理理论。未来的研究是否会从根本上动摇这些理论,从而完全推翻我们上面介绍的许多结果,还是一个未知数。退一步讲,即使那些物理理论基本成立,上面所叙述的许多结果也只是从那些理论推出的近似结果或特例。比方说,许多结果假定了虫洞是球对称的,而实际上虫洞完全可以是其它形状的,不同形状的虫洞所要求的负能量物质的数量,所产生张力的大小都是不同的。所有这些都表明即使那些物理理论真的成立,我们上面提到的结论也不见得是完全 打开它的方法就是共鸣利用物质间相互吸引原理使两时空虫洞正反两种物质能量互相吸引从而打开它,但这两种能量是光能量与暗能量 [编辑本段] 什么是时间?时间的本质? 时间随宇宙的变化而变。时间是因变量。----时间的本质,deng‘s时间公式 t=t(u,s,x,y,z) u-宇宙;s空间,xyz,事件,顺序 时间是宇宙事件秩序的计量。时间的本质 什么是时间?时间是宇宙事件顺序的度量。 时间不是自变量,而是因变量,它是随宇宙的变化而变化。 t=(s1,s2,s3,,sn) deng‘s时间公式:世界事件生次序的序列。其中,s是事件,s1,s2,s3,,sn是事件1,2,3,,n生的顺序,时间就是对这些事件生顺序的排序,标志的计量。 时间”是一个计量“事件过程的长短、次序”的“类别名词”。 可以说没有了“事件”,也就没有了时间(您可以试着举出没有事件还有时间的例子) 时间是人类用以描述物质运动过程或事件生过程的一个参数,确定时间,是靠不受外界影响的物质周期变化的规律。例如月球绕地球周期,地球绕太阳周期,地球自转周期,原子震荡周期等。 时间在数学、物理上用坐标轴表示。“时间”时会出现什么状况?怎样利用时间的本质来思考“衰老”的问题?下面开始细致的分析,内容包括:为什么有些“事件”可以“同时生”,有些却不能?时间与我们有什么关系? &1t;ahref=.>. 24章:笫四宇宙--平行宇宙1 平行宇宙(mu1tiverse、para11e1universes),或者叫多重宇宙论,指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。 平行宇宙 平行宇宙经常被用以说明:一个事件不同的过程或一个不同的决定的后续展是存在于不同的平行宇宙中的;这个理论也常被用于解释其他的一些诡论,像关于时间旅行的一些诡论,像「一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道」,解决此诡论除了假设时间旅行是不可能的以外,另外也可以以平行宇宙做解释,根据平行宇宙理论的解释:这颗球撞上自己和没有撞上自己是两个不同的平行宇宙,如此云云等 在近代这个理论已经激起了大量科学、哲学和神学的问题,而科幻小说亦喜欢将平行宇宙的概念用于其中 物理学里的平行宇宙 平行宇宙的分类 在2oo3年的科学人杂志里,有一篇由美国宇宙学家maxtegmark写的关于平行宇宙的专文,在文中他将平行宇宙分成四类: 第一类:这类的宇宙和我们宇宙的物理常数相同,但是粒子的排列法不同,同时这类的宇宙也可视为存在于已知的宇宙(可观测宇宙)之外的地方 第二类:这类的宇宙的物理定律大致和我们宇宙相同,但是基本物理常数不同 第三类:根据量子理论,一件事件生之后可以产生不同的后果,而所有可能的后果都会形成一个宇宙,而此类宇宙可归属于第一类或第二类的平行宇宙,因为这类宇宙所遵守的基本物理定律依然和我们所认知的宇宙相同(以上「一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道」诡论的平行宇宙解决办法属于此种) 第四类:这类的宇宙最基础的物理定律不同于我们宇宙,而基本上到第四类为止,就可以解释所有可能存在(也就是可想象得到的)的宇宙,一般而言这些宇宙的物理定律可以用m理论构造出来 平行宇宙简介 是否有另一个你正在阅读和本文完全一样的一篇文章?那个家伙并非你自己,却生活在一个有着云雾缭绕的高山、一望无际的原野、喧嚣嘈杂的城市,和其它7颗行星一同围绕一颗恒星旋转,并且也叫做“地球”的行星上?他(她)一生的经历和你每秒钟都相同。然而也许她此刻正准备放下这篇文章而你却打算看下去。 这种“分身”的想法听起来奇怪而又难以置信,但似乎我们不得不接受它,因为它已为各种天文观测的结果所支持。如今最流行同时也最简单的宇宙模型指出,离我们大约1o^(1o^28)米外之处存在一个和我们的银河一模一样的星系,而那其中正有个一模一样的你。虽然这距离大得乎人们的想象,却毫不影响你的“分身”存在的真实性。该想法最初起源于很简单的“自然可能性”而非现代物理所假设:宇宙在尺寸上无限大(或者至少足够大),并且象天文观测指出的那样--均匀的分布着物质。既然如此,按照统计学规律便可以断定,所有的事件(无论多么相似或者相同)都会生无数次:会有无数个孕育人类的星球,它们之中会有和你一模一样的人--一模一样的长相、名字、记忆甚至和你一模一样的动作、选择--这样的人还不止一个,确切的说,是无穷多个。 最新的宇宙学观测表明,平行宇宙的概念并非一种比喻。空间似乎是无限的。如果真是这样,一切可能会生的事情必然会生,不管这些事有多荒唐。在比我们天文观测能企及范围远得多的地方,有和我们一模一样的宇宙。天文学家甚至计算出它们距地球的平均距离。 你很可能永远见不到你的“影子”们。你能观测到的最远距离也就是自大爆炸以来光所行进的最远距离:大约14o亿光年,即4x1o^26米--定义了我们可观测视界的大小,或者简单地说,宇宙的大小,又叫做哈勃体积。同样的,另一个你所在的宇宙也是个同样大小的球体。以上便是对“平行宇宙”最直观的解释。每个宇宙都是更大的“多重宇宙”的一小部分。 圣经中所罗门的言论: 《传道书》1:9已有的事,后必再有。已行的事,后必再行。日光之下并无新事。 《传道书》1:1o岂有一件事人能指着说,这是新的。那知,在我们以前的世代,早已有了。 《传道书》1:11已过的世代,无人记念,将来的世代,后来的人也不记念。 《传道神一切所作的,都必永存,无所增添,无所减少。神这样行,是要人在他面前存敬畏的心。 《传道书》3:15现今的事早先就有了。将来的事早已也有了。并且神使已过的事重新再来。(或作并且神再寻回已过的事) 《传道书》9:16我就说,智慧胜过勇力。然而那贫穷人的智慧,被人藐视,他的话也无人听从。 希腊神话传说中的类似言论 天空中的大部分行星在25oo万年后,都会回到自己初始的轨道,宇宙是公正的,它给所有人的机会都是一样的----25oo万年!25oo万年后,我们将再次经历我们现在所经历的一切,遇见我们所遇见的人 [编辑本段] 平行宇宙层次 对“宇宙”的如此定义,人们也许会认为这只是种形而上学的方式罢了。然则物理学和形而上学的区别在于该理论是否能通过实验来测试,而不是它看起来是否怪异或者包含难以察觉的东西。多年来,物理学前沿不断扩张,吸收融合了许多抽象的(甚至一度是形而上学的)概念,比如球形的地球、看不见的电磁场、时间在高下流动减慢、量子重叠、空间弯曲、黑洞等等。近几年来“多重宇宙”的概念也加入了上面的名单,与先前一些经过检验的理论,如相对论和量子力学配合起来,并且至少达到了一个经验主义科学理论的基本标准:作出预言。当然作出的论断也可能是错误的。科学家们迄今讨论过多达4种类型独立的平行宇宙。现在关键的已不是多重宇宙是否存在的问题了,而是它们到底有多少个层次。 第一层次:视界之外 所有的平行宇宙组成第一层多重宇宙。--这是争论最少的一层。所有人都接受这样一个事实:虽然我们此时此刻看不见另一个自己,但换一个地方或者简单地在原地等上足够长的时间以后就能观察到了。就像观察海平面以外驶来的船只--观察视界之外物体的情形与此类似。随着光的飞行,可观察的宇宙半径每年都扩大半光年,因此只需要坐在那里等着瞧。当然,你多半等不到另一个宇宙的另一个你出的光线传到这里那天,但从理论上讲,如果宇宙扩张的理论站得住脚的话,你的后代就有可能用级望远镜看到它们。 怎么样,第一层多重宇宙的概念听起来平平无奇?空间不都是无限的么?谁能想象某处插着块牌子,上书“空间到此结束,当心下面的沟”?如果是这样,每个人都会本能的置疑:尽头的“外面”是什么?实际上,爱因斯坦的重力场理论偏偏把我们的直觉变成了问题。空间有可能不是无限,只要它具有某种程度的弯曲或者并非我们直觉中的拓扑结构(即具有相互联络的结构)。 一个球形、炸面圈形或者圆号形的宇宙都可能大小有限,却无边界。对宇宙微波背景辐射的观测可以用来测定这些假设。【见另一篇文章《宇宙是有限的吗?》byjeanet,g1ennd.starkmanandjeffreyr.eeks;snet,apri11999】然而,迄今为止的观察结果似乎背逆了它们。无尽宇宙的模型才和观测数据符合,外带强烈的限制条件。 另一种可能是:空间本身无限,但所有物质被限制在我们周围一个有限区域内--曾经流行的“岛状宇宙”模型。该模型不同之处在于,在大尺度下物质分布会呈现分形图案,而且会不断耗散殆尽。这种情形下,第一层多重宇宙里的几乎每个宇宙最终都将变得空空如也,陷入死寂。但是近期关于三维银河分布与微波背景的观测指出物质的组织方式在大尺度上呈现出某种模糊的均匀,在大于1o^24米的尺度上便观测不到清晰的细节了。假定这种模式延伸下去,我们可观测宇宙以外的空间也将充满行星、恒星和星系。 有资料支持空间延伸于可观测宇宙之外的理论。ap卫星最近测量了微波背景辐射的波动(左图)。最强烈的振幅过了o.5开,暗示着空间非常之大,甚至可能无穷(中图)。另外,ap和2df星系红移探测器现在非常大的尺度下,空间均匀分布着物质 生活在第一层多重宇宙不同平行宇宙中的观察者们将察觉到与我们相同的物理定律,但初始条件有所不同。根据当前理论,大爆炸早期的一瞬间物质按一定的随机度被抛出,此过程包含了物质分布的一切可能性,每种可能性都不为o。宇宙学家们假定我们所在的当初有着近似均匀物质分布和初始波动状态(1oo,ooo可能性中的一种)的宇宙,是一个相当典型的(至少在所有产生了观察者的平行宇宙中很典型)个体。那么距你最近的和你一模一样那个人将远在1o^(1o^28)米之外;而在1o^(1o^92)米外才会有一个半径1oo光年的区域,它里面的一切与我们居住的空间丝毫不差,也就是说未来1oo年内我们世界所生的每件事都会在该区域完全再现;而至少1o^(1o^118)米之外该区域才会增大到哈勃体积那么大,换句话说才会有一个和我们一模一样的宇宙。 上面的估计还算极端保守的,它仅仅穷举了一个温度在1o^8开以下、大小为一个哈勃体积的空间的所有量子状态。其中一个计算步骤是这样:在那温度下一个哈勃体积的空间最多能容纳多少质子?答案是1o^118个。每个质子可能存在,也可能不存在,也就是总共2^(1o^118)个可能的状态。现在只需要一个能装下2^(1o^118)个哈勃空间的盒子便用光所有可能性。如果盒子更大些--比如边长1o^(1o^118)米的盒子--根据抽屉原理,质子的排列方式必然会重复。当然,宇宙不只有质子,也不止两种量子状态,但可用与此类似的方法估算出宇宙所能容纳的信息总量。 与我们宇宙一模一样的另一个宇宙的平均距离,距你最近那个“分身”没准并不象理论计算的那么远,也许要近得多。因为物质的组织方式还要受其他物理规律制约。给定一些诸如行星的形成过程、化学方程式等规律,天文学家们怀疑仅在我们的哈勃体积内就存在至少1o^2o个有人类居住的行星;其中一些可能和地球十分相像。 第一层多重宇宙的框架通常被用来评估现代宇宙学的理论,虽然该过程很少被清晰地表达。举例来说,考察我们的宇宙学家如何通过微波背景来试图得出“球形空间”的宇宙几何图。随着空间曲率半径的不同,那些“热区域”和“冷区域”在宇宙微波背景图上的大小会呈现某种特征;而观测到的区域表明曲率太小不足以形成球形的封闭空间。然而,保持统计学上的严格是非常重要的事。每个哈勃空间的这些区域的平均大小完全是随机的。因此有可能是宇宙在愚弄我们--并非空间曲率不足以形成封闭球形使得观测到的区域偏小,而恰巧因为我们宇宙的平均区域天生就比别的来的小。所以当宇宙学家们信誓旦旦保证他们的球状空间模型有99.9%可信度的时候,他们的真正意思是我们那个宇宙是如此地不合群,以至1ooo个哈勃体积之中才会出一个象那样的。 这堂课的重点是:即使我们没法观测其他宇宙,多重宇宙理论依然可以被实践验证。关键在于预言第一层多重宇宙中各个平行宇宙的共性并指出其概率分布--也就是数学家所谓的“度量”。我们的宇宙应当是那些“出现可能性最大的宇宙”中的一个。否则--我们很不幸地生活在一个不大可能的宇宙中--那么先前假设的理论就有大麻烦了。如我们接下来要讨论的那样,如何解决这度量上的问题将会变得相当有挑战性。 第二层次:膨胀后留下的气泡 如果第一层多重宇宙的概念不太好消化,那么试着想象下一个拥有无穷组第一层多重宇宙的结构:组与组之间相互独立,甚至有着互不相同的时空维度和物理常量。这些组构成了第二层多重宇宙--被称为“无序的持续膨胀”的现代理论预言了它们。 “膨胀”作为大爆炸理论的必然延伸,与该理论的许多其他推论联系紧密。比如我们的宇宙为何如此之大而又如此的规整,光滑和平坦?答案是“空间经历了一个快的拉伸过程”,它不仅能解释上面的问题,还能阐释宇宙的许多其他属性。【见《膨胀的宇宙》bya1anh.guthandpau1j.steinetifinet,may1984;《自我繁殖的膨胀宇宙》byandrei1inde,november1994】“膨胀”理论不仅为基本粒子的许多理论所语言,而且被许多观测证实。“无序的持续”指的是在最大尺度上的行为。作为一个整体的空间正在被拉伸并将永远持续下去。然而某些特定区域却停止拉神,由此产生了独立的“气泡”,好像膨胀的烤面包内部的气泡一样。这种气泡有无数个。它们每个都是第一层多重宇宙:在尺寸上无限而且充满因能量场涨落而析出的物质。 对地球来说,另一个气泡在无限遥远之外,远到即使你以光前进也永远无法到达。因为地球和“另一个气泡”之间的那片空间拉伸的度远比你行进的度快。如果另一个气泡中存在另一个你,即便你的后代也永远别想观察到他。基于同样的原因,即空间在加扩张,观察结果令人沮丧的指出:即便是第一层多重空间中的另一个自己也将看不到了。 第二层多重宇宙与第一层的区别非常之大。各个气泡之间不仅初始条件不同,在表观面貌上也有天壤之别。当今物理学主流观点认为诸如时空的维度、基本粒子的特性还有许许多多所谓的物理常量并非基本物理规律的一部分,而仅是一种被称作“对称性破坏”过程的结果而已。举例言之,理论物理学家认为我们的宇宙曾一度由9个相互平等的维度组成。在宇宙早期历史中,只有其中3个维度参与空间拉神,形成我们现在观察到的三维宇宙。其余6个维度现在观察不到了,因为它们被卷曲在非常微小的尺度中,而且所有的物质都分布在这三个充分拉伸过的维度“表面”上(对9维来说,三维就是一个面而已,或者叫一层“膜”)。 我们生活在3+1维时空之中,对此我们并不特别意外。当描述自然的偏微分方程是椭圆或者双曲线方程时,也就是空间或者时间其中之一是o维或同时多维,对观测者来说,宇宙不可能预测(紫色和绿色部分)。其余情况下(双曲线方程),若n>3,原子无法稳定存在,n&1t;3,复杂度太低以至于无法产生自我意识的观测者(没有引力,拓扑结构也成问题)。 由此,我们称空间的对称性被破坏了。量子波的不确定性会导致不同的气泡在膨胀过程中以不同的方式破坏平衡。而结果将会千奇百怪。其中一些可能伸展成4维空间;另一些可能只形成两代夸克而不是我们熟知的三代;还有些它们的宇宙基本物理常数可能比我们的宇宙大。 产生第二层多重宇宙的另一条路是经历宇宙从创生到毁灭的完整周期。科学史上,该理论由一位叫richardc的物理学家于二十世纪3o年代提出,最近普林斯顿大学的pau1j.steinhardt和剑桥大学的nei1turok两位科学家对此作了详尽阐述。steinhardt和turok提出了一个“次级三维膜”的模型,它与我们的空间相当接近,只是在更高维度上有一些平移。【see‘beenet,‘bygeorgemusser;nessnet,march2oo2】该平行宇宙并非真正意义上的独立宇宙,但宇宙作为一个整体--过去、现在和未来--却形成了多重宇宙,并且可以证明它包含的多样性恰似无序膨胀宇宙所包含的。此外,沃特卢的物理学家1eesmo1in还提出了另一种与第二层多重宇宙有着相似多样性的理论,该理论中宇宙通过黑洞创生和变异而非通过膜物理学。 尽管我们没法与其他第二层多重宇宙之中的事物相互作用,宇宙学家仍能间接地指出它们的存在。因为他们的存在可以用来很好地解释我们宇宙的偶然性。做一个类比:设想你走进一座旅馆,现了一个房间门牌号码是1967,正是你出生那年。多么巧合呀,在那瞬间你惊叹到。不过你随即反应过来,这完全不算什么巧合。整个旅馆有成百上千的房间,其中有一个和你生日相同很正常。然而你若看见的是另一个与你毫无干系的数字,便不会引上面的思考。这说明什么问题呢?即便对旅馆一无所知,你也可以用上面的方法来解释很多偶然现象。 让我们举个更切题的例子:考察太阳的质量。太阳的质量决定它的光度(即辐射的总量)。通过基本物理运算我们可知只有当太阳的质量在1.6x1o^3o~2.4x1o^3o千克这么个狭窄范围内,地球才可能适合生命居住。否则地球将比金星还热,或者比火星还冷。而太阳的质量正好是2.ox1o^3o千克。乍看之下,太阳质量是种惊人的幸运与巧合。绝大多数恒星的质量随机分布于1o^29~1o^32千克的巨大范围内,因此若太阳出生时也随机决定质量的话,落在合适范围的机会将微乎其微。然而有了旅馆的经验,我们便明白这种表面的偶然实为大系统中(在这个例子里是许多太阳系)的必然选择结果(因为我们在这里,所以太阳的质量不得不如此)。这种与观测者密切相关的选择称为“人择原理”。虽然可想而知它引过多么大的争论,物理学家们还是广泛接收了这一事实:验证基础理论的时候无法忽略这种选择效应。 适用于旅馆房间的原理同样适用于平行宇宙。有趣的是:我们的宇宙在对称性被打破的时候,所有的(至少绝大部分)属性都被“调整”得恰到好处,如果对这些属性作哪怕极其微小的改变,整个宇宙就会面目全非--没有任何生物可以存在于其中。如果质子的质量增加o.2%,它们立即衰变成中子,原子也就无法稳定的存在。如果电磁力减小4%,便不会有氢,也就不会有恒星。如果弱相互作用再弱一些,氢同样无法形成;相反如果它们更强些,那些新星将无法向星际散播重元素离子。如果宇宙的常数更大一些,它将在形成星系之前就把自己炸得四分五裂。 虽然“宇宙到底被调节得多好”尚无定论,但上面举的每一个例子都暗示着存在许许多多包含每一种可能的调节状态的平行宇宙。【see‘exp1orinethers,‘bymartinetifinet,december第二层多重宇宙预示着物理学家们不可能测定那些常数的理论值。他们只能计算出期望值的概率分布,在选择效应纳入考虑之后。 第三层次:量子平行世界 第一层和第二层多重宇宙预示的平行世界相隔如此之遥远,出了天文学家企及的范围。但下一层多重宇宙却就在你我身边。它直接源于著名的、备受争议的量子力学解释--任何随机量子过程都导致宇宙分裂成多个,每种可能性一个。 量子平行宇宙。当你掷骰子,它看起会随机得到一个特定的结果。然而量子力学指出,那一瞬间你实际上掷出了每一个状态,骰子在不同的宇宙中停在不同的点数。其中一个宇宙里,你掷出了1,另一个宇宙里你掷出了2……。然而我们仅能看到全部真实的一小部分--其中一个宇宙。 2o世纪早些年,量子力学理论在解释原子层面现象方面的成功掀起了物理学革命。在原子领域下,物质运动不再遵守经典的牛顿力学规律。在量子理论解释它们取得瞩目成功的同时却引了爆炸性激烈的争论。它到底意味着什么?量子理论指出宇宙并不像经典理论描述的那样,决定宇宙状态的是所有粒子的位置和度,而是一种叫作波函数的数学对象。根据薛定鄂方程,该状态按照数学家称之为“统一性”的方式随时间演化,意味着波函数在一个被称为“希尔伯特空间”的无穷维度空间中演化。尽管多数时候量子力学被描述成随机和不确定,波函数本身的演化方式却是完全确定,没有丝毫随机性可言的。 关键问题是如何将波函数与我们观测到的东西联系起来。许多合理的波函数都导致看似荒谬不合逻辑的状态,比如那只在所谓的量子叠加下同时处于死和活两种状态的猫。为了解释这种怪异情形,在2o实际2o年代,物理学家们做了一种假设:当有人试图观察时,波函数立即“坍塌”成经典理论中的某种确定状态。这个附加假设能够解决观测现的问题,然而却把原本优雅和谐统一的理论变得七拼八凑,失去统一性。随机性的本质通常归咎于量子力学本身就是这些不顺眼假设的结果。 许多年过去了,物理学家们逐渐抛弃了这种假设,转而开始接受普林斯顿大学毕业生hugheverett在1957年提出的一种观点。他指出“波函数坍塌”的假设完全是多余的。纯粹的量子理论实际上并不产生任何矛盾。它预示着这样一种情形:一个现实状态会逐渐分裂成许多重叠的现实状态,观测者在分裂过程中的主观体验仅仅是经历完成了一个可能性恰好等于以前“波函数坍塌假设结果”的轻微的随机事件。这种重叠的传统世界就是第三层多重宇宙。 四十多年来,物理界为是否接受everett的平行世界犹豫不决,数度反复。但如果我们将之区分成不同视点分别来看待,就会更容易理解。研究它数学方程的物理学家们站在外部的视点,好像飞在空中的鸟审视地面;而生活在方程所描述世界里的观测者则站在内部的视点,就好比被鸟俯瞰的一只青蛙。 在鸟看来,整个第三层多重宇宙非常简单。只用一个平滑演化的、确定的波函数就能就能描绘它而不引任何分裂或平行。被这个演化的波函数描绘的抽象量子世界内部却包含了大量平行的经典世界。它们一刻不停的分裂、合并,如同经典理论无法描述的一堆量子现象。在青蛙看来,观察者感知的只有全部真相的一小部分。它们能观测到自己所在那个第一层宇宙,但是一种模仿波函数坍塌效果而又保留统一性、被称为“去相干”的作用却阻碍他们观测到与之平行的其他宇宙。 每当观测者被问及一个问题、做一个决定或是回答一个问题,他大脑里的量子作用就导致复合的结果,诸如“继续读这篇文章”和“放弃阅读本文”。在鸟看来,“作出决定”这个行为导致该人分裂成两个,一个继续读文章而另一个做别的去了。而在青蛙看来,该人的两个分身都没有意识到彼此的存在,它们对刚才分裂的感知仅仅是经历了个轻微的随机事件。他们只知道“自己”做了什么决定,而不知道同时还有一个“他”做了不同的决定。 尽管听起来很奇怪,这种事情同样生在前面讲过的第一层多重宇宙中。显然,你刚作出了“继续阅读本文”的决定,然而在很远很远的另一个银河系中的另一个你在读过第一段之后就放下了杂志。第一层宇宙和第三层宇宙唯一的区别就是“另一个你”身处何处。第一层宇宙中,他位于距你很远之处--通常维度空间概念上的“远”。第三层宇宙中,你的分身住在另一个量子分支中,被一个维度无限的希尔伯特空间分隔开来。 第三层多重宇宙的存在基于一个至关重要的假设:波函数随时间演化的统一。所幸迄今为止的实验都不曾与统一性假设背离。在过去几十年里我们在各种更大的系统中证实了统一性的存在:包括碳-6o布基球和长达数公里的光纤中。理论反面,统一性也被“去相干”作用的现所支持。【see‘1ooyearsofquantummysteries,‘bymaxtegmarkandjohnarnettifinet,february2oo1】只有一些量子引力方面的理论物理学家对统一性提出置疑,其中一个观点是蒸中的黑洞有可能破坏统一性,应该是个非统一性过程。但最近一项被叫做“ads/cft一致”的弦理论方面的研究成果暗示:量子引力领域也具有统一性,黑洞并不抹消信息,而是把它们传送到了别处。 如果物理学是统一的,那么大爆炸早期量子波动是如何运作的那幅标准图画将不得不改写。它们并非随机产生某个初始条件,而是产生重叠在一起的所有可能的初始条件,同时存在。然后,“去相干”作用保证它们在各自的量子分支里像传统理论那样演化下去。这就是关键之处:一个哈勃体积内不同量子分支(即第三层多重宇宙)演化出的分布结果与不同哈勃体积内同一个量子分支(即第一层多重宇宙)演化出的分布结果是毫无区别的。量子波动的该性质在统计力学中被称为“遍历性”。 同样的原理也可以适用在第二层多重宇宙。破坏对称性的过程并不只产生一个独一无二的结果,而是所有可能结果的叠加。这些结果之后按自己的方向展。因此如果在第三层多重宇宙的量子分支中物理常数、时空维度等各不相同的话,那些第二层平行宇宙同样也将各不相同。 换句话说,第三层多重宇宙并没有在第一层和第二层上增加任何新东西,只是它们更加难以区分的复制品罢了--同样的老故事在不同量子分支的平行宇宙间一遍遍上演。对everett理论一度激烈的怀疑便在大家现它和其他争议较少的理论实质相同之后销声匿迹了。 毫无疑问,这种联系是相当深层次的,物理学家们的研究也才处于刚刚起步阶段。例如,考察那个长久以来的问题:随着时间流逝,宇宙的数目会以指数方式暴涨吗?答案是令人惊讶的“不”。在鸟看来,全部世界就是由单个波函数描述的东西;在青蛙看来,宇宙个数不会过特定时刻所有可区别状态的总数--也即是包含不同状态的哈勃体积的总数。诸如行星运动到新位置、和某人结婚或是别的什么,这些都是新状态。在1o^8开温度以下,这些量子状态的总数大约是1o^(1o^118)个,即最多这么多个平行宇宙。这是个庞大的数目,却很有限。 从青蛙的视点看,波函数的演化相当于从这1o^(1o^118)个宇宙中的一个跳到另一个。现在你正处在宇宙a--此时此刻你正在读这句话的宇宙里。现在你跳到宇宙b--你正在阅读另一句话那个宇宙里。宇宙b存在一个与宇宙a一摸一样的观测者,仅多了几秒中额外记忆。全部可能状态存在于每一个瞬间。因此“时间流逝”很可能就是这些状态之间的转换过程--最初在gregegan在1994所著的科幻小说[permutationcity]中提出的想法,而后被牛津大学的物理学家daviddeutsnetbarbour等人展开来。 第四层次:其他数学界构 虽然在第一、第二和第三层多重宇宙中初始条件、物理常数可能各不相同,但支配自然的基础法则是相同的。为何不让这些基础法则也多样化?来个只遵守经典物理定律,让量子效应见鬼去的宇宙如何?想象一个时间像计算机一样一段一段离散地流逝,而非现在那样连续地流逝?再想象一个简单的空心十二面体宇宙?在第四层多重宇宙里,所有这些形态都存在。 平行宇宙的终极分类,第四层。包含了所有可能的宇宙。宇宙之间的差异不仅在表现物理位置、属性或者量子状态,还可能是基本物理规律。它们在理论上几乎就是不能被观测的,我们能做的只有抽象思考。该模型解决了物理学中的很多基础问题。 为什么说上述的多重宇宙并非无稽之谈?理由之一就是抽象推理和实际观测结果间存在着密不可分的联系。数学方程式,或者更一般地,数字、矢量、几何图形等数学结构能以难以置信的逼真程度描述我们的宇宙。1959年的一次著名讲座上,物理学家eugenep.igner阐述了“为何数学对自然科学的帮助大得神乎其神?”反言之,数学对它们(自然科学)有着可怕的真实感。数学结构能成为基于客观事实的主要标准:不管谁学到的都是完全一样的东西。如果一个数学定理成立的话,不管一个人,一台计算机还是一只高智力的海豚都同样认为它成立。即便外星文明也会现和我们一摸一样的数学界构。从而,数学家们向来认为是他们“现”了某种数学结构,而不是“明”了它。 关于如何理解数学与物理之间的关系,有两个长存已久并且完全对立的模型。两种分歧的形成要追溯到柏拉图和亚里斯多德。“亚里斯多德”模型认为,物理现实才是世界的本源,而数学工具仅仅是一种有用的、对物理现实的近似。“柏拉图”模型认为,纯粹的数学结构才是真正的“真实”,所有的观测者都只能对之作不完美的感知。换句话说,两种模型的根本分歧是:哪一个才是基础,物理还是数学?或者说站在青蛙视点的观测者,还是站在鸟视点的物理规律?“亚里斯多德”模型倾向于前者,“柏拉图”模型倾向于后者。 在我们很小很小,甚至尚未听说过数学这个词以前,我们都先天接受“亚里斯多德”模型。而“柏拉图”模型则来自于后天体验。现代理论物理学家倾向于柏拉图派,他们怀疑为何数学能如此完美的描述宇宙乃是因为宇宙生来就是数学性的。这样,所有的物理都归结于一个根本的数学问题:一个拥有无穷知识与资源的数学家理论上能从鸟视点计算出青蛙的视点--也就是说,为任何一个有自我意识的观测者计算出他所观测的宇宙有些什么东西、它将明何种语言来向它的同类描述它看到的一切。 宇宙的数学结构是抽象、永恒的实体,独立于时空之外。如果把历史比作一段录像,数学结构不是其中一桢画面,而是整个录像带。试设想一个由四处运动的点状粒子构成的三维世界。在四维时空--也就是鸟的视点--看来,世界类似一锅缠绕纠结的意大利面条。如果青蛙观测到一个总是拥有恒定率,方向的粒子,那么鸟就直接看到它的整个生命周期--一根长长的、直直的面条。如果青蛙看到两个相互围绕旋转的粒子,鸟就看到两根以双螺旋结构缠在一起的面条。对青蛙来说,整个世界以牛顿运动定律和引力定律为规则运作;而对鸟来说,世界被描绘成“意大利面条几何学”--一种数学结构。青蛙本人也仅是面条--一大堆复杂到构成它们的粒子能存储和处理信息的面条。我们的宇宙要比上述例子复杂的多,科学家们还没有找到--如果有的话--那个能正确描述它的数学结构。 “柏拉图”派模型带来了一个新的问题,为何我们的宇宙是现在这个样子。对“亚里斯多德”派来说,这个问题是没有意义的:因为宇宙的物理本源就是我们观测到的样子。但“柏拉图”派不仅无法回避它,反而会困惑为什么它不能是别的样子。如果宇宙天生是数学性的,为什么它仅仅基于“那一个”数学结构?要知道数学结构是多种多样的。似乎在真实的核心地带有某种最基本的不公平存在。 作为解决该难题的一条路径,我认为数学结构有着完全的对称性:基于任何数学结构的宇宙都确实存在。每一个数学结构都有与之相关的平行宇宙。构成这个宇宙的基础并不在该宇宙内而是游离于时间和空间之外。大部分平行宇宙内很可能不存在观测者。这种假说可以看成是本质上的柏拉图主义,它断言柏拉图领域提及的数学结构或是圣荷西州立大学的数学家rudyrunetdscape)”都存在对应的物理真实。它也类似于剑桥大学的宇宙学家johnd.barro提到的“天空中的π”,或是哈佛大学的哲学家robertnozick提出的“多产性原理”,或是普林斯顿的哲学家davidk.1eis所谓的“形式现实主义”。第四层终于宣告了多重宇宙在层次上的终结,因为任何自相容的物理理论都能表达成某种数学结构。 第四层多重宇宙的假设作出了可验证的预言。在第二个层次上,它包含了全体可能(全体数学结构)和选择效应。数学家们还在继续为这些数学结构分门别类,而他们最终应该现,用来描绘我们世界的那个数学结构将会是所有符合我们观测结果的结构中最简单那个。类似地,我们将来的观测结果将会是那些最简单的、与过去观测结相一致的东西;而过去的观测结果也应该是最简单的、与我们存在相符合的那些。 想要定量化这种“简单”是个严峻的考验,与之相关的研究才刚刚起步。但最具震撼性和令人鼓舞的是,对称和恒定的数学结构力图表现出的简明与整洁也正是我们宇宙所展现的。数学结构趋向于越简单越好,那些复杂的附加公理无疑破坏了简洁。 &1t;ahref=.>. 25章:笫二三宙宙--平行宇宙2 奥卡姆如是说以上便是我们所讨论的平行宇宙理论,它分为由低到高四个层次,与我们熟知宇宙的差异也随层次不同越来越大。这些差异可以来自不同的初始条件(第一层);不同的物理常数、粒子种类和时空维数(第二层);不同的物理规律(第四层)。有意思的是,第三层才是最近几十年研究最火热的东西,因为它本质上没有增添任何新的宇宙类型。 未来十年内,展迅猛的对宇宙微波背景和空间大尺度物质分布的测量会进一步确定空间的准确曲率和拓扑结构,其结果将直接支持或驳倒第一层多重宇宙的假说。这些测量结果也会验证“无序持续膨胀”理论,从而间接探测第二层多重宇宙。同时天体物理学与高能物理领域的巨大进展也将进一步阐明到底我们宇宙的哪些物理常数被“调节”过了,以此加强或削弱第二层多重宇宙的可信度。 如果当前研制量子计算机的大量努力成功的话,将为第三层平行宇宙提供更加深远的证据。不仅如此,量子计算机的工作是在本质上利用第三层多重宇宙的平行性。大量的试验同时也在寻找违反统一性--最终决定量子平行宇宙存在于否--的证据。现代物理学在其面对的最重大挑战--将广义相对论与量子场论统一起来--中成功与失败会改变对第四层多重宇宙的看法:最终会找到那个描述我们宇宙的数学结构,抑或是碍于数学的局限性而停止不前,最终放弃第四层次。 四层多重宇宙的关系 左上角那n圈蚊香就是无数个第一层平行宇宙,黄色的连线显示着它们包容于一个气泡中,这些气泡构成了第二层多重宇宙(左下)。右下角是所谓的量子平行宇宙(即第三层),中间那只猫就是著名的猫佯谬。猫佯谬是一个假想的用来连结微观量子现象和宏观世界的实验,一个微观粒子在特定场合出现与否取决于波函数的概率。这个箱子就被做成如果粒子出现了,就杀掉猫,否则不杀现在问题来了,根据量子理论,粒子既会出现,又不会出现,是该波函数载空间的弥散。那么猫是死是活呢?物理学家没办法,只好承认猫同时处在死和活两种状态现在第三层平行宇宙理论解决了这个问题宇宙分裂成两个,猫在其中一个里面活着,在另一个里面死了左上角是第四层平行宇宙,亦即和我们的基本物理概念都不同的宇宙图上画的从左到右,从上到下分别是形如曼德勃罗集的宇宙。曼德勃罗集是数学上最美丽的集合,产生规则简单得一句话就能说清楚,图形却比整个已知宇宙复杂得多。 第二个是正12面体宇宙 第三个有点象洛伦兹轨迹形状 下面那个方的叫谢尔宾斯基海绵,是一个体积为o的立方体,也是分形里面的东东。下面一排左边是一般的平滑空间;马鞍面空间;封闭的球状空间,最后一个是相互连通的怪异拓扑结构的空间,黄线表明量子平行宇宙和第二层多重宇宙是等价的,但可以看到量子平行宇宙只对应第四层的一小部分是因为第四层的基本物理规律都不同了,绝大部分根本没有“量子”这种概念 你是否该相信平行宇宙?主要争论集中在:它们很浪费并且很奇怪。最要的争论是,平行宇宙似乎不遵循“奥卡姆的剃刀”原则,因为它假设永远观测不到的其他宇宙存在。为何老天爷如此浪费并沉醉于这些多到无穷无尽的不同世界?争论充斥平行宇宙的每一个层次,为什么自然界偏偏要如此浪费?空间、物质或原子--毫无疑问地,仅第一层多重宇宙就已经包含了无限的上述事物,谁在乎它多浪费点呢?关键是让理论显式地变得简单。怀议论者担心要描述所有不可见世界所需的信息量。 然而,一个整体集合往往要比集合中的单个元素简单得多。该原理在描述算法的时候很常用。我们知道,一个非常简短的计算机程序程序就能输出异常庞大的信息量。举例而言,考察整数集。哪个更简单些,整数集还是其中某个特定整数?也许你会天真的觉得单个整数简单些,但事实上整个整数集能用非常简单的规则表达出来,寥寥几行计算机程序就能产生它们;相反单个整数却可能难以置信的大。因此,真正简单的是整个集合。 同样,爱因斯坦的整套引力场方程要比其中某个特定的要简单。前者只需要很少几个方程就能描述,而后者要求在某些平面指定大量的初始数据。由此我们学到,当我们把注意力局限在全体元素的一小部分上,复杂性就会大大增加,也就失去了整个系统原本应有的对称性和简洁性。 从这种意义上说,更高层次的多重宇宙意味着更简单。为了从我们居住的宇宙走向整个第一层多重宇宙,需要指定许多初始条件来消除彼此的差异;若是升级到第二层,需要指定一些物理常数;到了第四层则完全不用指定任何东西。多余的复杂性完全来自观测者的主观视点--也就是青蛙的视点。从鸟的视点来讲,多重宇宙要简单的多。 而抱怨该理论太奇怪的人出点多半来自审美上而非科学上。然而这种看法只有在亚里斯多德派中才有意义。我们期待着什么?当我们提出“现实的本源是什么”如此意义深远的问题时,难道我们仅期待一个听起来不那么奇怪的答案?进化赋予我们对日常生活中物理现象的直觉,然而它仅对我们远古的祖先有用。现在,当我们遨游于远日常物理的世界,我们应当预见到它们也许会很奇怪。 四层多重宇宙的共通特色是最简洁与最优雅的理论自然而然地包含着平行宇宙。要否认它们的存在,你必须复杂化你的理论,增加没有观测结果支持的过程和特殊的假定:无限的空间、波函数坍塌和天性不对称。那么,哪个才是真正的浪费和不雅,许多宇宙还是许多规则?也许我们将逐渐习惯宇宙的奇妙而终将现这种不可思议的奇妙正是它魅力的一部分。 [编辑本段] 实例解说----时间机器与平行世界 什么是平行宇宙?假设你手里拿着一片树叶,全世界独一无二的一片树叶,当然啦,世界上没有两片完全相同的叶子么。能不能换种看法呢:你手里拿着无数片树叶,只不过它们全都一模一样,在时间空间上叠合在一起了,所以你只能看见一片树叶,呵呵,有点诡辩,但也没错吧。甚至连你自己都有无限多个,只不过叠在一起了,在某种特定条件下没准会分一个出来呢。双面维若尼卡?不是啦,分出来的不止你一个人,整个世界那会跟着分出去了,于是有两个互不相干的世界,其中各有一个一模一样的你,只是你们俩永远都不会碰到一起,也就无从知道对方的存在,这就是所谓平行宇宙了。 往高深里说,这牵涉到量子物理学,往浅显里说,估计大家小时候闲来没事也想到过这个。官方说法都不尽统一,平行宇宙(para11e1universe),平行世界(para11e1or1d),多重宇宙(mu1tiverse),反正你知道是什么意思就行啦。 比如迈克福克斯回到过去撮合老爸老妈的婚姻,哗,电光一闪,世界分裂,迈克回去的并不是自己原先的那个世界,而是另外一个一模一样的平行世界,这两个平行世界在迈克回来之前是完全一模一样,重合在一起的,迈克一出现,就桥归桥路归路了。在分出来的这个平行世界里迈克其实爱干嘛就干嘛吧,就算娶了本该当自己老妈的那个女人,也不会造成自己消失的。 这么一说时间旅行就讲得通了,回到过去并不能改变现在,而是创造出另外一个新的世界来。就算杀你祖母,杀的也是另一个世界里的祖母。不过这样一来阿诺回去杀琳达就没有道理了,因为就算他得手,也不干现在什么事,只是改变了另一个世界的展走向。而且这样一来,很多英雄行为就缺乏动机了,难怪好莱坞不喜欢这样的理论。 不过有了理论,总会用得着,李连杰不就在《宇宙追缉令》的平行宇宙中来来回回赶了一通么。李连杰的平行宇宙称作”先置平行宇宙”,就是说不管你玩不玩时空挪移,无限多个宇宙原本就存在,有本事你就可以在里面窜来窜去。相对来说还有一种理论就是”后置平行宇宙”,只有你时空旅行,改变了历史,才会有新的平行世界分化出来。说到底也就是个先有鸡还是先有蛋的问题,没什么可多争论的。 1、人不可能回到过去,因为生过的事情怎么可能再出现一次呢?(m支持此看法)有一个叫“祖母悖论”的理论很好的证明了人不可能回到过去。理论是这样讲的:假如一个人回到过去把他的祖母给杀了(在这个人的母亲还没有出生前),就是说他祖母死了,因此来讲这个人的母亲也就没出生,这个人也就不可能再出生。而历史的展到现在,按理来说这个人是不存在的。而现实中这个人的确是存在的。这两个情况就出现了相互矛盾的情况。从而证明了人是不能回到过去的。(不知道啰嗦了半天,有人明白没) 2、人可以回到过去,同时又提出了另一个概念“平行宇宙论”。就是说一个人回到她祖母的时代,从那一时刻开始,宇宙的展及演化就分成了两个平行的宇宙。第一种情况,他把他的祖母ki11了,在第一个宇宙中的展是这个人把她的祖母k了,而到现在这个人也就不再存在了;而在另一个宇宙中的展还是像现在一样,这个人还是存在的。并没有什么事情生一样。科学家们还讲,空间是由无数这样的平行宇宙组成的。真是不可思议。 原作:(美)马克斯·铁马克 原载:《科学美国人》2oo3.5 翻译:fonetbsp;相关理论 无穷宇宙(开放宇宙)理论 开放宇宙理论、开放宇宙 无穷宇宙,在宇宙中存在有大量的可观测区(有着红色十字中心的红圈),我们的「宇宙」不过是其中的一个可观测区而已开放宇宙理论认为,我们目前所知的宇宙只是整个宇宙中可观测的一小部分,在这个部分之外,整个宇宙尚有无限大的未被观测的空间;根据相对论,光为宇宙最快的度,我们所看到的部分(可观测宇宙)为已经到达地球的光线,而我们所观测到的范围又被称做哈伯体积,哈伯体积直接取决于宇宙的年龄(因为若宇宙诞生于n年前,则能到达地球的光线最远只能在n光年处,再更远的光线则尚在路途上,故未能被地球上的观测者所观测),哈伯体积的膨胀是因为有越来越远处的光线到达地球 开放宇宙理论说明了第一类平行宇宙的可能性 泡沫宇宙理论 「泡沫宇宙」示意图,宇宙1到宇宙6各自有自己的物理常数,我们的「宇宙」不过是其中的一个「泡沫」而已泡沫宇宙理论认为存在有无限多的开放宇宙,而这些开放宇宙本身有着不同的物理常数,这些开放宇宙的「距离」比我们的开放宇宙的「边缘」还要远,意即这些宇宙存在于无穷远的地方之外。 这个理论由安德烈·林德最早提议,而泡沫宇宙理论本身能和膨胀理论在相当程度上契合,因为无人确切地知道膨胀是怎样开始的,所以同一机理总有可能再次生,即膨胀式的爆炸可能重复生。即不管是什么机理引起部分宇宙突然膨胀,该机理可能仍然在起作用,也许会意外地引起宇宙其他遥远的区域也生膨胀。 根据这个理论,一小片宇宙可能突然膨胀、“芽”,萌生一个“女孩”宇宙或“男孩”宇宙,这些宇宙又可能萌生另一个婴宇宙,如此不断进行下去。想象吹一个肥皂泡到空中。如果我们使劲吹,我们看到有些肥皂泡分成两半,产生新的肥皂泡。宇宙可能会以相同的方式不断产生新的宇宙。如果这是真的,我们可能生活在这样一个宇宙的海洋上,每个宇宙像一个漂浮在其他肥皂泡的海洋上的一个肥皂泡。事实上,比“宇宙”更确切的词应该是“多元宇宙”或“巨型宇宙”。 林德(1inde)将这一理论叫做永恒的、自我再生的膨胀,或“无次序的膨胀”,因为他预想的是一个绝无终止的平行宇宙连续膨胀的过程。次提出膨胀理论的艾伦·古思(a1anguth)说:“膨胀理论几乎是强迫我们接受多元宇宙的思想。” 这一理论也意味着,我们的宇宙可能在某个时候萌生了它自己的一个婴宇宙。也许我们自己的宇宙也是从更古老、更早期的宇宙萌生出来的。 马丁·里斯(martinrees)是大英帝国皇家学院的天文学家,他说:“我们通常所说的‘宇宙’可能只是全体成员中的一员。可能存在不计其数的规律不同的其他宇宙。我们所在的宇宙属于与众不同的子集,在这个宇宙中允许复杂的事物和意识得以展。” 越来越多的理论证据支持多元宇宙的存在,在多元宇宙中,整个宇宙不断萌生其他的宇宙。如果这是真的,它将统一两种重大的宗教神学,“创始”和“涅盘”。在无始无终的“涅盘”的织构中“创始”不断生。 所有这些关于多元宇宙主题的研究活动让人们开始思索,这些其他的宇宙看起来会是什么样子?是不是也有生命?是不是最终有可能与他们取得联系?加利福尼亚工学院、麻省理工学院、普林斯顿大学和其他研究中心的科学家已经进行了计算,以确定进入平行宇宙是不是符合物理学的规律。 大反弹理论 大反弹理论、振荡宇宙 根据回圈量子重力理论,大霹雳可能只不过是宇宙的膨胀和收缩时期组成的周期中,一个新的膨胀时期的开始而已,每个周周期开始于大霹雳、结束于大挤压(bignetch),而这个周期的轮回是无限的,这个模型被称为是振荡宇宙,在大霹雳之后宇宙膨胀,而之后在重力的作用之下宇宙开始收缩,然后接着是大挤压,在大挤压之后的下一次大霹雳被称为大反弹,虽然这个模型曾经一度被否决,但是膜宇宙论近年来已重拾此模型(振荡宇宙模型) 在每个周期中宇宙可能会有不同的宇宙常数,而因此这些不同周期时的宇宙可视为第二种平行宇宙 泡沫宇宙理论和大反弹理论使得第二种平行宇宙的存在成为可能 量子力学的多世界解释 主条目:量子力学的多世界解释 量子力学的多世界解释是一种主要的量子力学解释,在由此解释方式中的众平行宇宙共有一个关于时间的变数,而这些平行宇宙彼此之间有著相同的起源,而这些宇宙彼此之间的基本物理定律相同,但物理常数可能会有所不同,而它们亦可能处于不同的状态,而且这些宇宙彼此之间没有任何的联系,因此它们彼此之间没有任何讯息互通,这些宇宙彼此之间的关系由它们之间的叠加态决定 此理论为第三类平行宇宙的基础 m理论 根据m理论,我们的宇宙很可能是产生于11维薄膜的碰撞当中,基本上由此产生的宇宙可以和量子力学的多世界解释里所说的宇宙极为不同的宇宙 由m理论可推出第四种平行宇宙的存在 弦论「地景」 根据iib型(typeiib)的弦论,从十维弦论的世界到我们所知的四维世界有极多种的变换方式,而不同的变换方式会产生相当不同的宇宙 问题与批评 有些人认为平行宇宙理论缺乏对经验主义的关联性以及可测性,同时缺乏物理学上的证据和可否定性,因为这个理论以目前的科学方法无法证实或否定,而且这些理论目前而言太过形而上学且只是在数学结构上有可能而已;不过maxtegmark注意到了对宇宙微波背景辐射和宇宙物质大规模分布的测量的改进可能会否定或实证其中两种的平行宇宙存在的可能性,并进而能证实或否定开放宇宙理论和混乱暴涨理论,意即平行宇宙理论最少在某种程度上是可测的 一些人认为科学家的职责就是要在不涉及观察者的状况下对已观测的现象提出基本的解释。回归到人择原理在解释会建构出所谓的「懒惰出口」,而这些解释的种类包括了「很明显地为生命的存在微调过的宇宙参数」等等;不过李奥纳特·苏士侃宣称:某些形式的平行宇宙是无可避免的,在给出对现有宇宙状态的解释时,观测者效应是无法避免的而且得在其他的科学中获得解决 一些人认为,平行宇宙理论会被奥卡姆剃刀给排除,因为假设一些我们无法观测且无法看见的宇宙来解决我们所看见的,就像是带着额外的行李走到尽头一般;不过对此maxtegmark答曰:「这四种平行宇宙的一个共同特征就是:预设平行宇宙的存在模型是最简单且最优雅的模型。如果一个人要否决这些多重宇宙的存在,他需要在实验上地对多重宇宙论的不支持,并且要加入以下的假定:有限空间、波函数崩溃和本体上的不对称是正确的,而这些过程会复杂化整个理论。因此我们的对于谁比较不优雅且较为浪费的裁决就变成了以下两者:多重宇宙或者是大量的文辞」 有时有些人认为我们的宇宙是唯一可能存在的宇宙,因此讨论这些「其他的宇宙」是很明显地无意义的。爱因斯坦在思考其他种类的宇宙存在的可能性时,就提出了这个问题,关于宇宙结构是否只有一种可能的问题的解答的希望被认为在于理论上可统一全部物理理论的万物理论当中。 对于平行宇宙的观测证据的支援被认为来自于人择原理:「我们所观测到的宇宙对生命是友善的,要不然就不会被观测到。虽然这似乎是老调重弹,但是当生物体对物理法则和宇宙状况的敏感性、被考虑时,整个宇宙就是一个明显的证据;在另一方面,许多关键的物理常数似乎不会对于生物体造成严重的不适」;其他对于微调论证的批评是:就我们所知,在我们所知的物理常数之下可能还有更多的基本物理法则,而这些法则背后可能会有更多的参数存在,因此,给出这些定律,这些已知的物理常数未必落在生命许可的生存范围之内 多重宇宙支持者经常对于常数如何从已定义的整体中选取感到茫然。假设存在个「定律中的定律」或者基本定律描述说常数如果被从一个宇宙到下一个宇宙中指定,那么我们不过只是将宇宙学的问题给往上移了一个等级而已,因为我们必须解释这个基本定律从何而来。另外,这个基本法则是无穷大的,因此我不过是把问题从「为什么是这个宇宙」给置换成了「为什么是这个基本法则」。在援引平行宇宙论时这似乎是一个要点,尤其当假定只存在一个宇宙和一个原理会更简易时更是如此;但在maxtegmark的平行宇宙理论里,这个问题是被避开的,因为在那种状况当中,所有可能的基本理论被实行的,而且被用以描述真实存在的平行宇宙。 对于虚拟宇宙和平行宇宙之间的关系依旧是个问题。多数的科学家已经准备好要接受自觉机器的可能性,而有些人工智慧学者甚至于已经说我们快要能制造自觉电脑了,在距离达让自觉生物住在虚拟世界方面仅剩一步之遥。对于那些生物而言,他们的「假」宇宙和我们的真宇宙可说是无分别的。因此我们应该将这些虚拟宇宙在平行宇宙算在平行宇宙中吗?如果不是的话将我们自身存在的宇宙和这些虚拟宇宙划上等号有意义吗? 对于现有的平行宇宙论的最后一个问题是对于宇宙的定义。对多数的平行宇宙论者而言,宇宙是由物理法则和常数,以及初始条件定义的。这项论点可能会因为它的狭隘和沙文主义的性质而招致反对;对于将人类人类的理解之外的事物予以分类也可能会招致批评 小说里的平行宇宙 一些小说,尤其是科幻小说,喜欢以平行宇宙做为故事的内容,有时有些人会以平行宇宙来探讨「若一个历史的事件的结果或过程和我们所知的不同,那么世界会变成怎样」这类的主题,并因此写出一篇故事来说明可能的展 参见 弦理论 m理论 人择原理 &1t;ahref=.>. 26章:时速250万公里-笫一宇宙灯塔 **科技讯北京时间7月27日消息,据国外媒体报道,哈勃空间望远镜的最新观测显示一颗热蓝巨星被彻底的踢出了银河系。这个恒星在太空中以每小时16o万英里(25o万公里)疾驰,这相当于太阳围绕银河系中心公转度的3倍以上。哈勃观测显示它正从银河中心方向高向外运动,这在一定程度上让人们了解到它源于何方。 天文学家推测这颗恒星或许是一个三星系统的成员,在大约1亿年前,这个三星系统行经银河系动荡的核心区域。但很不幸的是它们犯了一个大错----它们太靠近银心了,那里存在一个黑洞。于是在黑洞的强大引力作用下,一颗成员恒星被吞噬,其他两颗恒星则被高甩出银河系。于是这两颗被抛出的恒星逐渐结合在了一起,形成了今天看到的热蓝巨星。 虽然这听上去似乎很不可思议,但是使用哈勃空间望远镜的科学家称这可能是这种所谓“高恒星”形成最符合逻辑的解释了。这颗高恒星的编号是heo437-5439,它是迄今探测到运行度最快的恒星之一。 “借助哈勃空间望远镜,我们得以次确认这颗恒星来自何方,因为我们可以追踪它在空间的运行轨迹,”天文学家沃伦·布朗(arrenbron)说。他来自哈佛-史密松天体物理台,是做出此项研究的哈勃望远镜小组成员,同时也是这篇论文的第一作者。“它的轨迹清楚指向银心。这样被流放的恒星在银河系的1ooo亿颗恒星中是不多见的,大约每1亿颗才会出现一颗高恒星。” 自从2oo5年现颗高恒星以来,天文学家已经现了16颗这样的恒星。它们中的大多数都被认为来自银河系中心区域。但此次哈勃的观测数据是对于这一理论的次观测证实,即高恒星起源于星系中心。那么这又告诉了我们什么信息呢? 答案是:这些以极高度运行的恒星的轨迹能让我们推算围绕我们星系的暗物质的分布情况。 “研究这些恒星可以为我们提供更多有关这个宇宙中那些看不见的物质的信息,并且帮助我们更好理解星系的形成机制,”奥列格·格内丁(o1eggnedin)说,他是一位来自密歇根大学的天文学家。“通过这些恒星飞离银河系的轨迹,我们可以反推出暗物质对其施加的引力作用。” 目前恒星heo437-5439已经位于银河系边缘区域,高高凌驾于银道面(银河系平面)之上,距离银心大约2o万光年。相比之下,银河系的直径也仅有1o万光年。天文学家利用哈勃的数据重建这颗恒星的运行轨迹,结果证明银心正是它旅途开始的地方。科学家随后进一步开始计算这颗恒星必须受到多大的甩力才能达到现在这样的位置上。 “这颗恒星正在以一种近乎荒谬的度运行,几乎相当于逃离银河系引力场所需度的两倍,”布朗说,也正是他在第一颗高恒星。“正常情况下任何恒星都不会跑这么快,一定是生了什么不寻常的事情。” 但情况也许更加复杂。根据它目前的度和所处的位置,恒星heo437-5439至少应当已经运行了1亿年。但是从它的质量(9倍太阳质量),以及它蓝色的颜色判断,它应当仅仅燃烧了大约2ooo万年。这远远小于从它的度和位置推出的时间值。对此,最符合逻辑的推测就是:它曾是一个三星系统中的成员星,在一次过度靠近银心的错误旅途中遇上了银心附近的巨大黑洞。 关于恒星获得逃逸度并逃离银河的理论最早提出于1988年。该理论预测位于银河中心的黑洞大约每1o万年将抛射一颗恒星。 布朗设想,这个三星系统原本拥有一对互相绕转的双星系统,以及一颗围绕这个双星系统公转的第三颗外围恒星。当这个三星系统遭遇黑洞时,强大的引力强行剥离了最外侧的那颗恒星。 这颗恒星遭遇了被吞噬的厄运,但是它的动能被转移到了那一对双星系统,使它们获得了足以逃出银河系的高度。当这对恒星高逃离时,它们仍然进行着常规的恒星演化进程。 双星系统中质量较大的那颗演化将较为迅,它膨胀为红巨星,吞噬了它的伴星。于是这两颗恒星的物质连接在了一起,相互融合,最终产生了一颗级蓝巨星,然后继续流浪。“可能你会觉得这个蓝巨星的故事听起来不可思议,但是银河系中确实存在蓝巨星,而且大多数位于多星系统之中。”布朗说。这可真是个神秘的蓝色流浪者。 这种流浪恒星从一开始现就一直让科学家困惑不已。2oo5年,汉堡/欧洲南方天文台巡天项目次现此类天体。 天文学家已经提出两种假设来解释这种恒星的年龄问题。要么这样的恒星本身是不受常规的恒星演化规律制约的,因而不能用经典的恒星年龄规律去进行计算;要么它们并非来自银河系,而是来自一个近邻星系----大麦哲伦星系。 2oo8年,有一个天文学家小组宣称他们可能已经解决了这个问题。他们将这些流浪恒星和大麦哲伦星系中恒星的化学组成特征进行对比,结果显示了完美的对应。另外,这颗恒星的位置也非常靠近大麦哲伦星系,距离仅有65ooo光年。 借助哈勃空间望远镜强大的“先进巡天相机”(acs),天文学家得以对这些捉摸不定的恒星进行相隔3.5年的重复观测。来自巴尔的摩空间望远镜研究所的小组成员杰·安德森(jayanderson)开了一种技术。这种技术可以自动对比所观测恒星目标与11颗遥远的背景恒星的相对位置,这样就有了一个参照系,用以判断这颗运动中恒星的位置。 安德森接着又找到2oo6年和2oo9年拍摄的该恒星的图像,通过这些数据来计算它的相对背景恒星的运动度。结果是,在此期间这颗恒星相对背景恒星的移动距离是o.o4像素。“哈勃的观测精度无与伦比,这项观测要是在地面上进行,将会非常困难,”安德森说。该小组现在还在努力试图确定另外4颗流浪恒星的来源地,它们都位于银河系的边缘。 “我们正在努力寻找像heo437-5439这样的b型星(一般恒星光谱中只有吸收线,但b型星光谱中还有射线,因此也称b型射星),”布朗说。在已现的16颗此类恒星中,他现了其中的14颗。“这种恒星寿命不长,它们应当是等不到抵达银河边缘的。银河外缘的恒星密度远低于银河中心,因此它们如果存在在那里的话,我们可以更容易的现它们。” 关于这一研究的论文已经表于7月2o日的《天体物理学快报》上。 &1t;ahref=.>. 27章:地球科学家的虚拟玩具对撞机 对撞机 对撞机(co11ider)用高能粒子轰击静止靶[1](粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为e,则对靶中同种粒子作用的质心系能量约为(e为粒子的静止能量)。可见,随着eo的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加粒子能量的利用效率越来越低,但是,如果是两个能量为e的相向运动的同种高能粒子束对撞,则质心系能量约为2e,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加器能量将比对撞机大得多。如果对撞机能量为e,则相应的加器能量应为2e2/e。例如,能量为2x3oogev的质子、质子对撞机,同一台能量o为18oooogev的质子加器相当,建造这样高能量的加器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近2o年来对撞机得到广泛展的原因之一。 对撞机的主要指标除能量外还有亮度。所谓对撞机的亮度是指该对撞机中所生的相互作用反应率除以该相互作用的反应截面。显然亮度越高对撞机的性能就越好,1986年时对撞机达到的亮度约在1o29~1o32netbsp;展历史 2o世纪5o年代初,加器的设计者就有过利用对撞束来获得更高质心系能量的设想,但是鉴于加器中束流的强度太低,束流密度远低于靶的粒子密度,双束对撞引起的相互作用反应率将比束流轰击固定靶时生的反应率低1o6倍,这样,很难进行最低限度的测量,这种设想就没有得到应有的重视,1956年人们开始懂得依靠积累技术,可以获得必要强度的束流,从而使对撞机的研究真正被提到日程上来。 正负电子对撞机的造价低,技术简单,因此它是先研究的对象。最初的两台对撞机是1961年投入运行的,不久又相继出现了好几台低能量的电子对撞机。b.里希特就是在美国斯坦福直线加器中心的正负电子对撞机spear上现著名的j/ψ粒子的(同时在美国布鲁克海文国家实验室由丁肇中教授现),为近代高能物理的展作出了很大的贡献,正是由于这一成就为后来人们下决心建造更大的正负电子对撞机起了决定性的作用。 目前建成的质子对撞机如欧洲核子中心代号isr的交叉储存环,其能量为2x31gev,它于1971年已投入运行。 由于电子冷却及随机冷却技术(见加器技术和原理的展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞。欧洲核子中心于1981年将一台能量为4oogev的质子同步加器(即sps)改建成质子-反质子对撞机,并于1983年取得了极其重要的实验成果,现了±、zo粒子。 对撞机特点 与同步加器极为相似,对撞机呈环形,沿环安放着磁铁系统、高频系统、真空系统以及探测和校正系统等。此外,它沿圆环还有两个或两个以上专供对撞用的特殊长直线节,探测仪器就被安置在长直线节内的对撞点附近的空间中。使电荷相反,静止质量相同的两束粒子相碰比较简单,只要建立一个环就行了。如果是电荷相同的同种粒子相撞,就必须要建立两个环。两个环的外加磁场方向相反。这两个环可以建在同一平面中,使其在几个交叉的地方进行对撞;也可以建立在上下两个不同平面中,用特殊的电磁场使两种粒子在长直线节内相撞,此外,高能量的对撞机还需要用一台高能加器(一般用同步加器或直线加器)作为注入器,先把粒子加到一定能量,再注入到对撞机中去进行积累,进一步加及对撞。积累、加及对撞是对撞机的三大机能,所谓积累是设法把高能加器在不同时间加出来的脉冲粒子束团积累在对撞机环形真空室(称为储存环)中。一般需要积累几十或上千个束团,才能达到对撞所需的强度。电子同步加器的束流团的积累是依靠同步辐射来完成的,同步辐射虽然使同步加器的能量难于进一步提高,但却使得电子束的横向及纵向的尺寸在加过程中大大收缩,即密度大大提高,利用这一特性就可以积累一股很强的电子束流。质子却没有这种特性,这就需要用动量积累过程来得到强流质子束。积累以后,对撞机还可以将注入其中的高能粒子进一步加到更高的能量,对撞机的这一作用与普通的同步加器完全一样,粒子的能量是由安置在圆环上的高频加腔供给的,在整个加过程中,对撞机的磁场逐渐上升,高频腔的频率也被严格控制得与被加粒子的回旋频率一样或成整数倍,从而使粒子不断地被加到更高能量。当粒子被加到预定能量后,对撞机的磁场就被维持在相应的恒定值上,粒子束就在环形真空室中不断地回旋,两束并在对撞区域内某点生对撞。这时布置在对撞区周围的测量仪器,就可对碰撞时生的事例不断地进行测量,剩下的没有起反应的粒子将继续在环里回旋运动,等到下一次到达对撞区时再度生对撞。一直到束流的强度降低到不能再作物理实验为止,这时两股束流的寿命也就中止了。束流的寿命一般可达几小时或几十小时,所以作为注入器的高能加器只有在积累过程中才把粒子束流提供给对撞机,而在对撞的过程中,还可供轰击静止靶的物理实验用。为了增加对撞的几率(即提高对撞机的亮度),7o年代初期,出现了在对撞区中插入一种特殊的称为低包络插入节的聚焦结构,使束流在对撞点的横截面受到强烈的压缩,从而使对撞点的束流密度大大增加。由于采用了这种结构,使7o年代建造的对撞机的亮度比以前提高了一两个数量级。另外,为了尽可能的延长束流的寿命,对撞机环内的真空度平均不得低于1o-8~1o-9torr,尤其是在对撞区附近。为了减少物理实验的本底,即为了保证使束流与束流生对撞的几率大大过束流与残余气体相撞的几率,真空度应维持在1o-1o~1o-11torr左右。所以大体积高真空这一技术也随着对撞机的展而展起来了。 对撞机的主要类型 电子-正电子对撞机1、电子-正电子对撞机又称正负电子对撞机,由于正负电子的电荷相反,所以这种对撞机只要建立一个环就可以了。相应的造价就比较低,目前世界上已建成的对撞机大部分是属于这一类的。 但是,由于电子回旋时引起的同步辐射损失,使这种对撞机能量的进一步提高生了困难,因为同步辐射功率与电子的能量二次方成正比,且与回旋半径的平方成反比,为了减少辐射损失,一般高能量的电子对撞机均采用大半径方案,即采用只有几千高斯的低磁场来控制电子的运动,即使如此,目前电子对撞机的最高能量仍然受到很大的限制,例如,1ogev的电子在曲率半径为1oom的对撞机中运动时,每圈的辐射损失约为1omev,如果对撞机中的回旋电流为1a,要补偿这束电子流的辐射损失,就需要平均功率为1om的高频功率。假如正电子流也为1a,则总的平均功率为2om,由此可见,对撞机中高加频系统的功率绝大部分是用来补偿这一同步辐射损失的。 辐射特性虽然给电子能量的进一步提高带来了困难,但也有一定的好处,这是因为电子或正电子注入对撞机后,由于电子的辐射损失,使电子截面受到强烈的压缩,电子很快集中到一个很小的区域中,其余的空间可以用来容纳再一次注入的电子,这样使积累过程简化,而且允许采用较低能量的注入器,通常采用直线加器,也有采用电子同步加器的。 这种对撞机中所需的正电子是由能量为几十兆电子伏以上的电子打靶后产生的,为了得到尽可能强的正电子束,往往需要建造一台低能量的强流电子直线加器。另外产生出来的正电子束尚需再度注入到注入器中,与电子一起加到必要的能量,再注入到对撞机中去。由于正电子束的强度只及电子束的千分之一到万分之一,所以需要几分甚至几十分钟的积累,才能达到足够的强度。 2、质子-质子对撞机这种对撞机需要建造两个环,分别储存两束相反方向回旋的质子束,才能实行质子与质子的对撞。由于质子作回旋运动时,其同步辐射要比电子小得多,在目前质子达到的能量范围内,可以略去不计,因此为缩小这类对撞机的规模,尽量采用强磁场,这就需要采用导磁体。另外,质子束的积累也不如电子对撞机那样方便,它必须依靠动量空间的积累来实现。为此,必须先在高能同步加器中,将质子加到高能(一般为几十吉电子伏),依靠绝热压缩,将质子束的动量散度压缩上百倍,再注入到对撞机中去进行积累,质子对撞机中的高频加系统主要是用来进行动量空间的积累及积累完毕后的进一步加,因此所需要的高频功率也比电子对撞机小得多。由于上述原因,质子-质子对撞机的规模要比电子-正电子对撞机大,投资也较高。 3、质子-反质子对撞机质子与反质子的质量相同,电荷相反,也只需要造一个环就能进行对撞。这种对撞机展得较晚,主要原因在于由高能质子束打靶产生的反质子束强度既弱,性能又差,无法积累到足够的强度与质子对撞。7o年代后期,“冷却”技术的成功,给予这种对撞机巨大的生命力(见加器技术和原理的展)。 由于冷却技术的成功,使得现有的高能质子同步加器,只要它的磁铁性能及真空度够好的话,均有可能可以改成质子-反质子对撞机。今后再建的高能质子同步加器,均考虑了同时进行质子-反质子对撞的可能,由此可见,这一技术成功的意义是何等重要。 实现质子-反质子对撞虽然比质子-质子对撞能节省一个大环,但也有一定的弱点,主要是由于尽管经过冷却及积累,反质子的强度仍然比质子的低得多,这样使得质子-反质子对撞机的亮度比质子-质子对撞机低得多,前者最大为1o29~1o3onetetbsp;4、电子-质子对撞机这种对撞机的主要困难在于电子束的横截面很小,线度约为几分之一毫米,而质子的横截面较大,线度约为一厘米左右。前者束流较密集,后者较疏松,两者相撞时作用几率很小,目前正在研究中,实现这种对撞需建立两个环,一个是低磁场的常规磁铁环,以储存及加电子;另一个是高场的导磁体环,以储存并加质子,两个环的半径相同并放在同一隧道中,所以电子的能量通常是几十吉电子伏,质子的能量为几百吉电子伏。随着加器技术的提高,为了节约投资,新建的巨型加器,往往在一个隧道中建造三个环,以便可能进行多种粒子对撞,例如质子质子、质子-反质子,电子-正电子、质子-电子对撞。 5、电子直线对撞机为避免电子作回旋运动时同步辐射损失引起的困难,早在1965年已有人指出,在电子能量高于上百吉电子伏时,应采用直线型来进行对撞,就是说,应采用两台电子直线加器加两股运动方向相反的电子束(或正负电子束)待达到预定能量后,两股电子束被引出并在某点相碰。碰撞一次后的电子束即被遗弃,不再重复利用。当然,只有当这些被遗弃的电子束单位时间所带走的能量小于环形对撞机中同步辐射的损失功率,这种方案才会被考虑。另外,由于电子直线加功率的限制,每秒能提供的电子束脉冲数是有限的,所以单位时间内生的碰撞次数也比环形对撞机少得多,为了保证直线对撞机与环形对撞机有相同的亮度,要求在碰撞点的横截面进一步压缩,约比环形对撞机中的碰撞截面小几十到几百倍,十多年来技术上的进展,使这种对撞机受到重视,有关的各种问题正在解决中。 大型强子对撞机5、大型强子对撞机大型强子对撞器(1argehadronco11ider,1hc)是一座位于瑞士日内瓦近郊欧洲核子研究组织net的粒子加器与对撞机,作为国际高能物理学研究之用。(全球定位点:北纬46度14分oo秒,东经6度o3分oo秒46.233333333333;6.o5)1hc已经建造完成,北京时间2oo8年9月1o日下午15:3o正式开始运作,成为世界上最大的粒子加器设施。1hc是一个国际合作的计划,由34国过两千位物理学家所属的大学与实验室,所共同出资合作兴建的。 1hc包含了一个圆周为27公里的圆形隧道,因当地地形的缘故位于地下5o至15o米之间。[1]这是先前大型电子正子加器(1ep)所使用隧道的再利用。隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部份大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等等建构于其上。 加器通道中,主要是放置两个质子束管。加管由导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向磁铁及聚焦磁铁。 两个对撞加管中的质子,各具有的能量为7tev(兆兆电子伏特,),总撞击能量达14tev之谱。每个质子环绕整个储存环的时间为89微秒(minetd)。因为同步加器的特性,加管中的粒子是以粒子团(bunch)的形式,而非连续的粒子流。整个储存环将会有28oo个粒子团,最短碰撞周期为25纳秒(nanosenetd)。在加器开始运作的初期,将会以轨道中放入较少的粒子团的方式运作,碰撞周期为75纳秒,再逐步提升到设计目标。 在粒子入射到主加环之前,会先经过一系列加设施,逐级提升能量。其中,由两个直线加器所构成的质子同步加器(ps)将产生5omev的能量,接着质子同步推进器(psb)提升能量到1.4gev。而质子同步加环可达到26gev的能量。低能量入射环(1eir)为一离子储存与冷却的装置。反物质减器(ad)可以将3.57gev的反质子,减到2gev。最后级质子同步加器(sps)可提升质子的能量到45ogev。 2o余名中国科学家参与强子对撞机实验 在1hc加环的四个碰撞点,分别设有五个侦测器在碰撞点的地穴中。其中环面仪器(at1as)与紧凑渺子线圈(cms)是通用型的粒子侦测器。其他三个(1hc底夸克侦测器(1hcb),大型离子对撞器(a1ice)以及全截面弹性散射侦测器(totem)则是较小型的特殊目标侦测器。 1hc也可以用来加对撞重离子,例如铅(pb)离子可加到115otev。 由于1hc有着对工程技术上极端的挑战,安全上的确保是极其重要的。当1hc开始运作时,磁铁中的总能量高达1oo亿焦耳(gj),而粒子束中的总能量也高达725百万焦耳(mj)。只需要1o?7总粒子能量便可以使导磁铁脱离导态,而丢弃全部的加粒子可相当于一个小型的爆炸。 6、相对论重离子对撞机位于美国纽约长岛的布鲁柯海文国家实验室的世界顶级科学研究设备----相对论重离子对撞机(re1ativistinetco11ider,rhic)。这一顶尖级研究设备经过1o年的建设,于2ooo年正式运行。来自世界过各地的数百名物理学家,试图利用rhic研究宇宙起源的最初时刻所生的事情。该加器驱动两束金离子束流对撞,以求帮助科学家理解从最小的粒子物理世界到最大的恒星世界的运作方式和原理。 &1t;ahref=.>. 28章:二万年的古地球-太古宇 太古宇地层系统分类的第一个宇,指太古宙时期所形成的地层系统。旧称太古界、始生界,原属隐生宇(隐生宇后已不使用,改称太古宇或元古宇)。中国的太古宇分为古太古界、中太古界和新太古界,主要出露于华北地层区。 简介 太古宇(arnet)一般变质程度较深,构造变动大,分布广,组成古地台的基底。 基本特征 它的主要特征是中基性火山岩、变质基性岩和凝灰岩的广泛育,很少有碳酸盐岩石。 代表性的地层 津巴布韦克拉通的塞巴奎群(>35亿年)和布拉瓦纳群(26亿~27亿年);南非卡普瓦尔克拉通的斯威士兰系翁韦瓦克特群(>35亿年)、无花果群(29亿年)和木迪群;印度地盾的半岛片麻岩(33.6亿年)、比尔沃拉群(32亿~25亿年);西伯利亚地台的阿尔丹群(33亿年);东欧地台波罗的地盾的白海杂岩(35亿~3o亿年)、科拉群(27亿年)、萨姆岩系(27亿年)、乌克兰地盾的坎斯克--维尔霍夫群(35亿年);南美亚马孙克拉通的伊玛塔卡杂岩(34亿~27亿年);北美地台的斯蒂尔瓦特杂岩(27.5亿年)、科切钦格群(3o亿年)、阿比提比群(>3o亿年)、卡迪拉克群(>27亿年)、塔津群(>27亿年)等;澳大利亚皮尔巴拉地块的瓦拉伍纳群(34.5亿年)、乔治溪群和惠姆溪群(29.5亿年)等。根据岩性、建造特征,并结合同位素年龄值,中国华北的阜平群、桑干杂岩群、泰山岩群、登封岩群和东北南部的鞍山群均属太古宇,组成了中朝地台的基底。扬子地台北缘鱼洞子岩群和塔里木北缘托格拉克布拉克杂岩也属太古宇。太古宇与元古宇之间一般为明显的角度不整合关系。 29章:地球上的古宇宙-太古宇 太古宇 中国早前寒武纪(太古宙--古元古代)地层主要分布于华北地区,是华北陆块结晶基底的主要组成部分,其他地区也有零星出露。所有的岩层都经历了不同类型的区域变质及其他地质作用,形成不易辨认和划分的复杂变质岩系或杂岩。 中国早前寒武纪地层业已进行了地层划分,建立了岩石地层单位和构造-岩石地层位,累积了大量的同位素年龄数据,确认或论述了众多地层单位的地质年代和对比关系。但由于这些地层经历了复杂的地质作用,在成因、时代归属等认识上还存在不少的分歧。 中国的太古宇分为古太古界、中太古界和新太古界,主要出露于华北地层区(图2-2)。近年,在华南地区北缘、西南缘,塔里木盆地南、北缘等地也有现。详见表2-1至表2-11。 华北地层区的太古宇 华北地层区的太古宇详见表2-3至表2-7。 1古太古界 我国目前已确认的古太古界,仅见于河北省迁安县的曹庄-黄柏峪-杏山一带和辽宁省鞍山市以东的陈台沟一带。前者称为曹庄岩组,后者称为前台岩组(陈台沟表壳岩)。此外,时代尚有争议的桑干岩群亦暂置于古太古界。 2中太古界 中太古界分为下亚界和上亚界。 3新太古界 新太古界主要为一套绿岩组合,以五台山区的五台群为代表。下亚界石嘴亚群,由黑云变粒岩、石英片岩、斜长角闪岩、铁英岩等组成;中亚界台怀亚群,由绢云英片岩、绿泥钠长片岩、绢云-绿泥片岩等组成;上亚界高繁亚群,为绢云千枚岩、变粉砂岩、石英岩、绿泥片岩等互层。其原岩,下、中部主要为基性夹酸性火山岩类及少量沉积岩,上部为泥砂质沉积岩。变质作用显示了多相递进变质。 其他地区的太古宇 1塔里木-南疆地区 塔里木盆地南、北两侧的太古宇,仅见两处。一为库鲁克塔格(山)中段辛格尔一带的托格拉格布拉克杂岩,主要由片麻岩类、变粒岩、夹斜长角闪岩和各种片岩不均匀互层组成,其上部被早元古界兴地塔格群不整合覆盖。另一处见于阿尔金山东段的米兰岩群,由片麻岩、斜长角闪岩、紫苏麻粒岩、浅粒岩等组成。详见表2-2。 2中天山-北山地区 阿尔金山西段-中段和北山地区的敦煌杂岩和鸣沙山岩群,主要有黑云斜长片麻岩、斜长角闪(片)岩、二云石英片岩、变粒岩、浅粒岩、石英岩、含石墨(透闪)大理岩等,夹铁英岩。见表2-2。 3华北陆块西缘的阿拉善地区 主要为阿拉善群,岩性为角闪岩-麻粒岩相变质岩系。见表2-4。 4秦祁昆地区 该区变质岩系主要为角闪岩相-麻粒岩相的变质地层,如湟源群、白沙河岩组等。其年龄值大多在18ooma~24ooma,故一般归属于古元古代。见表2-3。 5张广才岭-完达山区 主要指分布于黑龙江省鸡西市一带的麻山岩群,为紫苏、二辉麻粒岩,黑云变粒岩、石墨片岩、片麻岩、大理岩等。详见表2-1。 6华南区 华南区北缘 太古宇包括鄂西的东冲河岩群、略阳一带的鱼洞子杂岩,主要为绿片岩相-角闪岩相的变质岩层,岩性组合大多为黑云(角闪)斜长片麻岩、夹变粒岩、斜长角闪岩和各种片岩、大理岩等。原岩为泥质碎屑岩-火山岩组合。见表2-9,表2-1o。 华南区西缘 见于四川南部,为康定杂岩(岩群),为一套混合岩化的斜长角闪岩片麻岩、变粒岩等。(表2-8)。 下扬子及东南沿海地区 出露于闽西北、鄂、赣及皖中等地的天井坪岩组、星子岩群和阚集杂岩;分布于闽西北的天井坪岩组为黑云斜长片麻岩、变粒岩夹斜长角闪岩、片岩、石英岩。见表2-1o。 大别--苏鲁地区 变质岩系亦为角闪岩相--麻粒岩相变质地层。见表2-9。 &1t;ahref=.>. 30章:银河阳光隧道三大美女间谍 1988年时的金贤姬 看看这个优雅而沉静的中年女人,你能想到她曾经是一个年轻漂亮,会说流利日语、中文、英语、韩语,曾经制造1oo多人死亡的韩国航空公司客机爆炸案的间谍吗?她就是金贤姬,朝鲜三大美女间谍之一,是1987年造成12o人死亡的韩国客机空难的凶手,同时也是朝韩之间所有间谍题材电影取材的灵感源泉。随着她再次走进人们的视野,关于她的种种消息再次浮出水面…… 访日先见鸠山由纪夫 据韩国媒体7月2o日报道,被韩国认定为1987年大韩航空858客机爆炸案主犯的原朝鲜特工金贤姬(48岁)2o日抵达日本,随后前往日本前相鸠山由纪夫的别墅。 报道称,金贤姬当天上午乘坐日本政府提供的飞机抵达羽田机场,之后直奔位于长野县轻井泽的鸠山由纪夫别墅。据分析,金贤姬之所以访问鸠山由纪夫别墅,是因为鸠山由纪夫曾担任日本民主党绑架问题负责人。 虽然日本媒体竞相采访金贤姬的日本访问,但具体日程一直被保密。日本政府以护卫为由,拒绝公开她的访问行程。 访日由日韩政府促成 日韩政府相关人士本月8日曾透露,日韩两国政府当时商议了1987年造成12o人罹难的大韩航空公司客机爆炸案主犯、原朝鲜特工金贤姬在本月访日一事。双方计划在参院选举后就具体日程进行探讨。 金贤姬访日将与在1977年被朝鲜绑架受害者横田惠的父母见面。由于金贤姬称在朝鲜遇到过横田惠,估计此次会面将会向横田父母叙述当时的情况。日韩两国政府正在考虑从安全角度出不公开金贤姬的访日行程。 金贤姬访日一事主要由日本国家公安委员长兼绑架问题担当相中井洽促成。最初计划使其在5月成行,但由于韩国海军警戒舰“天安”号沉没事件一度使朝鲜半岛局势恶化,加之又生了朝鲜特工暗杀叛逃到韩国的前朝鲜劳动党书记黄长烨计划暴露等事件,韩国政府一度对金贤姬访日一事表现出谨慎态度,因此其访日行程被延期。 她曾制造韩国大空难 金贤姬曾经是朝鲜年轻貌美的女特务,**。父亲为外贸事务高级官员。小时候因父亲调任朝鲜驻古巴大使馆,金贤姬在古巴生活过一段时间。金贤姬自幼也受到对金日成金正日父子至死不渝的坚定思想训练,从小功课表现杰出,高中毕业时也考上朝鲜外语大学的日语系,但是未毕业就被特务机关给盯上而获选为特工。 金贤姬起初只是立志当个外语老师,却秘密进入了训练特工的地方“东北里招待所”接受搏击、射击、爆破甚至是迅自我了结等艰苦特工训练。1984年韩国取得1988年的奥运主办权。金正日决定炸毁韩国“大韩航空”班机来加以干扰。经过千挑万选,金正日特别选中了日语流利的老特务金胜一与金贤姬假扮成一对日籍观光父女,前往中东,经过一连串的缜密事先规划,搭上“大韩航空858班机”,并巧妙地在飞机上安置9个小时后才会爆炸的装置,然后从容脱逃。 “死亡班机”果然在9个小时后于空中引爆解体,并造成全机12o人罹难。 卢泰愚特赦她的死刑 空难生后,国际刑警组织立刻介入调查。警察现,登记为“日籍乘客”的“蜂谷真一”与“蜂谷真由美”两人嫌疑很大。此时他们已顺利逃往巴林。国际刑警赶往巴林,进门前两人迅服毒自尽。等警方破门而入时,金胜一已气绝,而金贤姬一息尚存,经全力抢救得以幸存。 当时卢泰愚正寻求当选韩国总统,因此努力让国际刑警引渡金贤姬回到韩国。 金贤姬开始说她自己是偷渡到日本讨生活的偷渡客,后又下定决心要在监狱自尽。不过韩国侦讯人员并没有使用酷刑,反而很温和对待她,允许她看电视,到繁华的尔市区随意逛逛…… 有一次在侦讯室,检察官用“中文”询问她偷渡去日本后所使用的电视品牌为何,她一时说溜了口:“是杜鹃!”而杜鹃是当时朝鲜唯一生产的电视品牌。金贤姬终于穿帮了。长久的压抑使她完全放弃了隐藏。金贤姬只能说:“我叫金贤姬,出生在平壤……韩航858班机案子是我奉命干下的!” 199o年,韩国法院判处金贤姬死刑。 1991年的一天,狱官让金贤姬打开囚室里的电视新闻频道。韩国总统卢泰愚宣布特赦金贤姬并即日起获得释放。 在被释放之后,金贤姬一直在韩国情报部门保护下从事著述和讲演。其后来出版的题为《现在,作为女人》的手记,在韩日两国都成为畅销书,后又被拍成电影。1997年12月,金贤姬与当时曾参与她的调查工作的原韩国安企部官员秘密结婚,现在韩国过着“普通主妇”的生活。但由于1987年空难遇难者家属的抗议和爆炸事件本身的复杂性,对金贤姬来说,“像普通女人一样生活”恐怕永远都只是一个梦。 除了金贤姬,传闻中的朝鲜三大美女间谍还包括以下两位: 朝鲜战争后,韩国政府每次布黑名单、“邪恶轴心名录”,金秀琳都是唯一上榜的女性。她貌美如花,是上层社会有名的交际花,被认为是为朝鲜情报机构服务的“第一女间谍”。 195o年7月下旬,朝鲜军队逼近汉城(今尔),韩**方下令处死35岁的金秀琳,称她是“非常恶毒的国际间谍”。此后,金秀琳更加声名狼藉。当时的美国媒体评价说,金秀琳是“背叛美国的韩国狐狸精”。后来成为美国总统的罗纳德-里根,当时还在好莱坞打拼,他主持引进了一部电视剧,把金秀琳描述成亚洲版的玛塔-哈莉――西方世界最著名的十大间谍之一。美国政治家德鲁-皮尔森甚至认为,金秀琳“挑起了朝鲜战争”。 半个多世纪过去了,金秀琳和她复杂的感情生活、“间谍生涯”被历史封存。近日,美国国家档案馆一份标注着“绝密”的文件被打开,金秀琳的名字再次出现在人们面前。这份文件讲述了一个完全不同的故事:金秀琳被控从美国一名陆军上校、当时美军驻韩国的宪兵司令贝尔德那里取得了情报,通报给了朝鲜军方。而事实是,这名美国上校本人都不知道这个情报,金秀琳根本没有情报可以泄露。 袁正华1974年出生,1989年~1992年间,她在朝鲜接受对韩间谍训练,因训练途中受伤而退役。之后,她因偷盗百货商店,在6年中辗转各地。1998年,袁正华在亲戚的帮助下了结了盗窃事件,并成为朝鲜保卫部的成员,然后被派往中国,在吉林等地经商。在1999年~2oo1年期间,袁正华先后参与了对1oo多名“脱北者”及韩国商人的绑架活动。2oo1年1o月,袁正华接到“上级”潜入韩国的指令,遂伪装成朝鲜族人与韩国男子崔某结婚,之后前往韩国定居,并获得韩国国籍。 袁正华在进入韩国后又伪装成“脱北者”,并于2oo1年11月向韩国国家情报院自。在这一身份的“掩护”下,袁正华往返于中国、韩国、朝鲜和日本,开展间谍活动。 韩国联合调查本部于2oo8年7月15日拘捕了袁正华。联合调查本部还逮捕并拘禁了指使袁正华从事间谍工作和转送情报至朝鲜的间谍金某(63岁)。 袁正华2oo8年1o月在尔被判入狱5年。 &1t;ahref=.>. 31章 深邃和费雯丽误入的-先躯者 1972年3月2日美国射宇宙飞船对木星进行考察 美国今天射了“先驱者”1o号宇宙飞船。按计划它将进行宇航史上时间最长、目标最远的星际航行,即经过21个月的飞行到达木星。 由于技术问题在关键时刻耽误了一些时间之后,射终于在下午8时5o分开始。官员们说飞船已进入轨道,正以每小时31413英里的度运行。这艘飞船重57o磅,有4台核电机为各系统和所有仪器供电。 该船此行的目的是对木星的富氢大气圈、云层覆盖和辐射带进行探测。 当“先驱者”1o号于1973年12月到达木星时,它将次拍摄太阳系中这颗最大行星的近距照片,“先驱者”号的轨道可使飞船在1o万英里内接近木星,并可使之对木星进行4天的近距观测。 这样飞船便可以对该行星3/4的表面进行拍摄。 与木星相遇后,“先驱者”号将飞往太阳系的外层边缘,成为进入外层空间的第一艘宇宙飞船。飞船携带一张录有地球人对外星人的问候语和有关我们所居住的行星的情况的唱片。外星人或许能在太空中听到我们的声音。